Blame view

main.cu 17.2 KB
9191c39e   Jiaming Guo   first version of ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
  #include <stdlib.h>
  #include <string>
  #include <fstream>
  #include <algorithm>
  
  // CUDA include
  #ifdef __CUDACC__
  #include "device_launch_parameters.h"
  #include <cuda.h>
  #include <cuda_runtime_api.h>
  #include "cuda_runtime.h"
  #endif
  
  // OPENGL include
  #include <GL/glut.h>
  #include <GL/freeglut.h>
  
  #include "flow.h"
  
  // STIM include
  #include <stim/visualization/gl_aaboundingbox.h>
  #include <stim/parser/arguments.h>
  #include <stim/visualization/camera.h>
  #include <stim/visualization/colormap.h>
  #include <stim/cuda/cudatools/error.h>
  
  
  //********************parameter setting********************
  // overall parameters
  int vX, vY;
  float dx, dy, dz;										// x, y and z image scaling(units/pixel)
  std::string stackdir = "";								// directory where image stacks will be stored
  stim::arglist args;										// create an instance of arglist
  stim::gl_aaboundingbox<float> bb;						// axis-aligned bounding box object
  stim::camera cam;										// camera object
  unsigned num_edge;										// number of edges in the network
  unsigned num_vertex;									// number of vertex in the network
  std::vector<unsigned> pendant_vertex;					// list of pendant vertex index in GT
  std::vector<std::string> menu_option = { "simulation", "build inlet/outlet", "manufacture" };
  stim::flow<float> flow;									// flow object
  float move_pace;										// camera moving parameter
  float u;												// viscosity
  float rou;												// density
  float max_v;
  float min_v;
  int mods;												// special keyboard input
  std::vector<unsigned char> color;						// velocity color map
  std::vector<int> velocity_bar;							// velocity bar
  
  // hard-coded parameters
  float camera_factor = 1.2f;			// start point of the camera as a function of X and Y size
  float orbit_factor = 0.01f;			// degrees per pixel used to orbit the camera
  float zoom_factor = 10.0f;			// zooming factor
  float border_factor = 20.0f;		// border
  float radii_factor = 1.0f;			// radii changing factor
  GLint subdivision = 20;				// slices and stacks
  float default_radii = 5.0f;			// default radii of network vertex
  float delta = 0.01f;				// small discrepancy
  float eps = 20.0f;					// epsilon threshold
  float max_pressure = 0.0f;			// maximum pressure that the channel can bear
  
  // glut event parameters
  int mouse_x;						// window x-coordinate
  int mouse_y;						// window y-coordinate
  bool LTbutton = false;				// true means down while false means up				
  
  // simulation parameters
  bool simulation = false;			// flag indicates simulation mode
  bool color_bound = false;			// flag indicates velocity color map bound
  bool to_select_pressure = false;	// flag indicates having selected a vertex to modify pressure
  unsigned pressure_index;			// the index of vertex that is clicked
  
  // build inlet/outlet parameters
  bool build_inlet_outlet = false;	// flag indicates building inlets and outlets
  bool modified_bridge = false;		// flag indicates having modified inlet/outlet connection
  
  // manufacture parameters
  bool manufacture = false;			// flag indicates manufacture mode
  
  
  //********************helper function*********************
  // get the network basic information
  inline void get_background() {
  
  	pendant_vertex = flow.get_boundary_vertex();
  	num_edge = flow.edges();
  	num_vertex = flow.vertices();
  
  	// set the initial radii
  	flow.init(num_edge, num_vertex);			// initialize flow object
  	for (unsigned i = 0; i < num_edge; i++)
  		flow.set_r(i, default_radii);
  }
  
  // convert from window coordinates to world coordinates
  inline void window_to_world(GLdouble &x, GLdouble &y, GLdouble &z) {
  
  	GLint    viewport[4];
  	GLdouble modelview[16];
  	GLdouble projection[16];
  	GLdouble winX, winY;
  	GLfloat  winZ;
  
  	glGetIntegerv(GL_VIEWPORT, viewport);
  	glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
  	glGetDoublev(GL_PROJECTION_MATRIX, projection);
  
  	winX = (GLdouble)mouse_x;
  	winY = viewport[3] - (GLdouble)mouse_y;
  	glReadPixels((GLint)winX, (GLint)winY, (GLsizei)1, (GLsizei)1, GL_DEPTH_COMPONENT, GL_FLOAT, &winZ);
  	gluUnProject(winX, winY, winZ, modelview, projection, viewport, &x, &y, &z);
  }
  
  
  //********************simulation function**********************
  // initialize flow object
  void flow_initialize() {
  
  	stim::vec3<float> center = bb.center();
  
  	for (unsigned i = 0; i < pendant_vertex.size(); i++) {
  		if (flow.get_vertex(pendant_vertex[i])[0] <= center[0])
  			flow.P[pendant_vertex[i]] = max_pressure - i * delta;	// should set minor discrepancy
  		else
  			flow.P[pendant_vertex[i]] = (i + 1) * delta;			// algorithm treat 0 as no initial pressure
  	}
  }
  
  // find the stable flow state
  void flow_stable_state() {
  	
  	flow.solve_flow(u);
  	flow.get_color_map(max_v, min_v, color, pendant_vertex);
  	color_bound = true;
  
  	velocity_bar.resize(num_edge);
  	for (unsigned i = 0; i < num_edge; i++)
  		velocity_bar[i] = i;
  	std::sort(velocity_bar.begin(), velocity_bar.end(), [&](int x, int y) {return abs(flow.v[x]) < abs(flow.v[y]); });
  }
  
  
  //********************glut function********************
  // dynamically set menu
  // @param num: number of current menu options
  // @param range: range of option to be set from menu_option list
  void glut_set_menu(int num, int range) {
  
  	// remove last time menu options
  	for (int i = 1; i < num + 1; i++)
  		glutRemoveMenuItem(1);
  
  	// set new menu options
  	std::string menu_name;
  	for (int i = 1; i < range + 1; i++) {
  		menu_name = menu_option[i - 1];
  		glutAddMenuEntry(menu_name.c_str(), i);
  	}
  }
  
  // set up the squash transform to whole screen
  void glut_projection() {
  
  	glMatrixMode(GL_PROJECTION);					// load the projection matrix for editing
  	glLoadIdentity();								// start with the identity matrix
  	vX = glutGet(GLUT_WINDOW_WIDTH);				// use the whole screen for rendering
  	vY = glutGet(GLUT_WINDOW_HEIGHT);
  	glViewport(0, 0, vX, vY);						// specify a viewport for the entire window
  	float aspect = (float)vX / (float)vY;			// calculate the aspect ratio
  	gluPerspective(60, aspect, 0.1, 1000000);		// set up a perspective projection
  }
  
  // translate camera to origin
  void glut_modelview() {
  
  	glMatrixMode(GL_MODELVIEW);						// load the modelview matrix for editing
  	glLoadIdentity();								// start with the identity matrix
  	stim::vec3<float> eye = cam.getPosition();		// get the camera position (eye point)
  	stim::vec3<float> focus = cam.getLookAt();		// get the camera focal point
  	stim::vec3<float> up = cam.getUp();				// get the camera "up" orientation
  
  	gluLookAt(eye[0], eye[1], eye[2], focus[0], focus[1], focus[2], up[0], up[1], up[2]);	// set up the OpenGL camera
  }
  
  // glut render function
  void glut_render() {
  
  	glEnable(GL_DEPTH_TEST);
  	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  	glut_projection();
  	glut_modelview();
  
  	if (!simulation && !build_inlet_outlet || manufacture) {
  		flow.glCylinder0();
  	}
  	else {
  		flow.bounding_box();
  		flow.glSolidSphere(max_pressure, subdivision);
  		flow.mark_vertex();
  		flow.glSolidCone(subdivision);
  		flow.glSolidCylinder(subdivision, color);
  		flow.glSolidCuboid();
  	}
  
  	if (build_inlet_outlet) {
  		flow.line_bridge();
  	}
  	
  	if (manufacture) {
  		flow.glSolidCuboid();
  		flow.tube_bridge(subdivision);
  	}
  	
  
  	// render bars
  	// bring up a pressure bar on left
  	if (to_select_pressure) {
  		
  		glMatrixMode(GL_PROJECTION);									// set up the 2d viewport for mode text printing
  		glPushMatrix();
  		glLoadIdentity();
  		vX = glutGet(GLUT_WINDOW_WIDTH);								// get the current window width
  		vY = glutGet(GLUT_WINDOW_HEIGHT);								// get the current window height
  		glViewport(0, 0, vX, vY);										// locate to left bottom corner
  		gluOrtho2D(0, vX, 0, vY);										// define othogonal aspect
  
  		glMatrixMode(GL_MODELVIEW);
  		glPushMatrix();
  		glLoadIdentity();
  
  		glLineWidth(border_factor);
  		glBegin(GL_LINES);
  		glColor3f(0.0, 0.0, 1.0);										// blue to red
  		glVertex2f(border_factor, border_factor);
  		glColor3f(1.0, 0.0, 0.0);
  		glVertex2f(border_factor, (vY - 2.0f * border_factor));
  		glEnd();
  		glFlush();
  
  		// pressure bar text
  		glColor3f(1.0f, 1.0f, 1.0f);
  		glRasterPos2f(0.0f, vY - border_factor);
  		std::stringstream ss_p;
  		ss_p << "Pressure Bar";
  		glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));
  
  		// pressure range text
  		float step = vY - 3.0f * border_factor;
  		step /= 10;
  		for (unsigned i = 0; i < 11; i++) {
  			glRasterPos2f((border_factor * 1.5f), (border_factor + i * step));
  			std::stringstream ss_n;
  			ss_n << (float)i * max_pressure / 10;
  			glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_10, (const unsigned char*)(ss_n.str().c_str()));
  		}
  		glPopMatrix();
  		glMatrixMode(GL_PROJECTION);
  		glPopMatrix();
  	}
  
  	// bring up a velocity bar on left
  	if (simulation && !to_select_pressure) {
  		
  		glMatrixMode(GL_PROJECTION);									// set up the 2d viewport for mode text printing
  		glPushMatrix();
  		glLoadIdentity();
  		vX = glutGet(GLUT_WINDOW_WIDTH);								// get the current window width
  		vY = glutGet(GLUT_WINDOW_HEIGHT);								// get the current window height
  		glViewport(0, 0, vX, vY);										// locate to left bottom corner
  		gluOrtho2D(0, vX, 0, vY);										// define othogonal aspect
  
  		glMatrixMode(GL_MODELVIEW);
  		glPushMatrix();
  		glLoadIdentity();
  
  		float step = (vY - 3 * border_factor);
  		step /= num_edge;
  		for (unsigned i = 0; i < num_edge; i++) {
  			glLineWidth(border_factor);
  			glBegin(GL_LINES);
  			glColor3f((float)color[velocity_bar[i] * 3 + 0] / 255, (float)color[velocity_bar[i] * 3 + 1] / 255, (float)color[velocity_bar[i] * 3 + 2] / 255);
  			glVertex2f(border_factor, border_factor + i * step);
  			glVertex2f(border_factor, border_factor + (i + 1) * step);
  			glEnd();
  		}
  		glFlush();
  
  		// pressure bar text
  		glColor3f(1.0f, 1.0f, 1.0f);
  		glRasterPos2f(0.0f, vY - border_factor);
  		std::stringstream ss_p;
  		ss_p << "Velocity range";
  		glutBitmapString(GLUT_BITMAP_HELVETICA_18, (const unsigned char*)(ss_p.str().c_str()));
  
  		// pressure range text
  		step = vY - 3 * border_factor;
  		step /= 10;
  		for (unsigned i = 0; i < 11; i++) {
  			glRasterPos2f(border_factor * 1.5f, border_factor + i * step);
  			std::stringstream ss_n;
  			ss_n << min_v + i * (max_v - min_v) / 10;
  			glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_10, (const unsigned char*)(ss_n.str().c_str()));
  		}
  		glPopMatrix();
  		glMatrixMode(GL_PROJECTION);
  		glPopMatrix();
  	}
  	
  	glutSwapBuffers();
  }
  
  // register glut menu options
  void glut_menu(int value) {
  
  	int num = glutGet(GLUT_MENU_NUM_ITEMS);
  	if (value == 1) {
  		simulation = true;
  		build_inlet_outlet = false;
  		manufacture = false;
  		modified_bridge = false;
  		flow_initialize();
  		flow_stable_state();					// main function of solving the linear system
  		flow.print_flow();
  		
  		glut_set_menu(num, 2);
  	}
  
  	if (value == 2) {
  		simulation = false;
  		build_inlet_outlet = true;
  		manufacture = false;
  		if (!modified_bridge) {
  			flow.set_main_feeder();
  			flow.build_synthetic_connection(u);
  		}
  
  		glut_set_menu(num, 3);
  	}
  
  	if (value == 3) {
  		simulation = false;
  		build_inlet_outlet = false;
  		manufacture = true;
  		flow.check_synthetic_connection(u);
  	}
  
  	glutPostRedisplay();
  }
  
  // defines camera motion based on mouse dragging
  void glut_motion(int x, int y) {
  
  	mods = glutGetModifiers();
  	if (LTbutton && mods == 0) {
  
  		float theta = orbit_factor * (mouse_x - x);		// determine the number of degrees along the x-axis to rotate
  		float phi = orbit_factor * (y - mouse_y);		// number of degrees along the y-axis to rotate
  
  		cam.OrbitFocus(theta, phi);						// rotate the camera around the focal point
  	}
  	mouse_x = x;										// update the mouse position
  	mouse_y = y;
  
  	glutPostRedisplay();								// re-draw the visualization
  }
  
  // get click window coordinates
  void glut_mouse(int button, int state, int x, int y) {
  
  	mouse_x = x;
  	mouse_y = y;
  	if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
  		LTbutton = true;
  	else if (button == GLUT_LEFT_BUTTON && state == GLUT_UP)
  		LTbutton = false;
  
  	if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && simulation && !to_select_pressure) {
  
  		GLdouble posX, posY, posZ;
  		window_to_world(posX, posY, posZ);			// get the world coordinates
  
  		bool flag = flow.epsilon_vertex((float)posX, (float)posY, (float)posZ, eps, pressure_index);
  		if (flag) {
  			std::vector<unsigned>::iterator it = std::find(pendant_vertex.begin(), pendant_vertex.end(), pressure_index);
  			if (it != pendant_vertex.end()) 		// if it is dangle vertex
  				to_select_pressure = true;
  		}
  	}
  	else if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && simulation && to_select_pressure) {
  		if (y > 2 * border_factor || y < vY - border_factor) {		// within the pressure bar range
  			to_select_pressure = false;
  			float tmp_pressure = (float)(vY - y - border_factor) / ((float)vY - border_factor) * max_pressure;
  			flow.set_pressure(pressure_index, tmp_pressure);
  
  			flow_stable_state();									// main function of solving the linear system
  			flow.print_flow();
  		}
  	}
  }
  
  // define camera move based on mouse wheel move
  void glut_wheel(int wheel, int direction, int x, int y) {
  	
  	mouse_x = x;
  	mouse_y = y;
  
  	GLdouble posX, posY, posZ;
  	window_to_world(posX, posY, posZ);			// get the world coordinates
  
  	if (!to_select_pressure) {
  		bool flag = flow.epsilon_vertex((float)posX, (float)posY, (float)posZ, eps, pressure_index);
  		if (flag && simulation) {
  			float tmp_r;
  			if (direction > 0) {				// increase radii
  				tmp_r = flow.get_radius(pressure_index);
  				tmp_r += radii_factor;
  			}
  			else {
  				tmp_r = flow.get_radius(pressure_index);
  				tmp_r -= radii_factor;
  				if (tmp_r <= 0)
  					tmp_r = default_radii;
  			}
  			flow.set_radius(pressure_index, tmp_r);
  			flow_stable_state();
  			flow.print_flow();
  		}
  		else {
  			if (direction > 0)								// if it is button 3(up), move closer
  				move_pace = zoom_factor;
  			else											// if it is button 4(down), leave farther
  				move_pace = -zoom_factor;
  
  			cam.Push(move_pace);
  		}
  	}
  	
  	glutPostRedisplay();
  }
  
  // define keyboard inputs
  void glut_keyboard(unsigned char key, int x, int y) {
  
  	// register different keyboard operation
  	switch (key) {
  
  		// zooming
  	case 'w':						// if keyboard 'w' is pressed, then move closer
  		move_pace = zoom_factor;
  		cam.Push(move_pace);
  		break;
  	case 's':						// if keyboard 's' is pressed, then leave farther
  		move_pace = -zoom_factor;
  		cam.Push(move_pace);
  		break;
  
  		// output image stack
  	case 'm':
  		if (manufacture) {
  #ifdef __CUDACC__
  			flow.make_image_stack(dx, dy, dz, stackdir);
  #else
  			std::cout << "You need to have a gpu to make image stack, sorry." << std::endl;
  #endif
  		}
  		else if (build_inlet_outlet && !modified_bridge) {
  			flow.modify_synthetic_connection(u, rou);
  			modified_bridge = true;
  		}
  		break;
  	}
  
  	glutPostRedisplay();
  }
  
  // glut initialization
  void glut_initialize() {
  
  	int myargc = 1;
  	char* myargv[1];
  	myargv[0] = strdup("generate_network_network");
  
  	glutInit(&myargc, myargv);
  	glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
  	glutInitWindowPosition(100, 100);							// set the initial window position
  	glutInitWindowSize(1000, 1000);
  	glutCreateWindow("3D flow simulation");
  
  	glutDisplayFunc(glut_render);
  	glutMouseFunc(glut_mouse);
  	glutMotionFunc(glut_motion);
  	glutMouseWheelFunc(glut_wheel);
  	glutKeyboardFunc(glut_keyboard);
  
  	glutCreateMenu(glut_menu);					// create a menu object 
  	glut_set_menu(0, 1);
  	glutAttachMenu(GLUT_RIGHT_BUTTON);			// register right mouse to open menu option
  
  	stim::vec3<float> c = bb.center();			// get the center of the network bounding box
  	// place the camera along the z-axis at a distance determined by the network size along x and y
  	cam.setPosition(c + stim::vec<float>(0, 0, camera_factor * std::max(bb.size()[0], bb.size()[1])));
  	cam.LookAt(c[0], c[1], c[2]);
  }
  
  int main(int argc, char* argv[]) {
  	
  	// add arguments
  	args.add("help", "prints the help");
  	args.add("network", "load network from .obj or .swc file");
  	args.add("maxpress", "maximum allowed pressure in g / units / s^2, default 2 is for blood when units = um", "2", "real value > 0");
  	args.add("viscosity", "set the viscosity of the fluid (in g / units / s), default .00001 is for blood when units = um", ".00001", "real value > 0");
  	args.add("rou", "set the desity of the fluid (in g / units^3), default 1.06*10^-12 is for blood when units = um", ".00000000000106", "real value > 0");
  	args.add("stackres", "spacing between pixel samples in each dimension(in units/pixel)", "1 1 1", "real value > 0");
  	args.add("stackdir", "set the directory of the output image stack", "", "any existing directory (ex. /home/name/network)");
  	
  	args.parse(argc, argv);								// parse the command line
  
  	// load network
  	if (args["network"].is_set()) {						// load network from user 
  		std::vector<std::string> tmp = stim::parser::split(args["network"].as_string(), '.');
  		if ("obj" == tmp[1])
  			flow.load_obj(args["network"].as_string());
  		else if ("swc" == tmp[1])
  			flow.load_swc(args["network"].as_string());
  		else {
  			std::cout << "Invalid file type" << std::endl;
  			std::exit(1);
  		}
  	}
  	get_background();
  
  	// blood pressure in capillaries range from 15 - 35 torr
  	// 1 torr = 133.3 Pa
  	max_pressure = args["maxpress"].as_float();
  
  	// normal blood viscosity range from 4 - 15 mPa·s(cP)
  	// 1 Pa·s = 1 g / mm / s
  	u = args["viscosity"].as_float();			// g / units / s
  
  	// normally the blood density in capillaries: 1060 kg/m^3 = 1.06*10^-12 g/um^3
  	rou = args["rou"].as_float();
  
  	// get the vexel and image stack size
  	dx = args["stackres"].as_float(0);
  	dy = args["stackres"].as_float(1);
  	dz = args["stackres"].as_float(2);
  
  	// get the save directory of image stack
  	if (args["stackdir"].is_set())
  		stackdir = args["stackdir"].as_string();
  
  	// glut main loop
  	bb = flow.boundingbox();
  	glut_initialize();
  	glutMainLoop();
  }