Blame view

stim/optics/mie.h 29.3 KB
9339fbad   David Mayerich   implementing mie ...
1
2
  #ifndef STIM_MIE_H
  #define STIM_MIE_H
8309b07a   David Mayerich   fixed some vec3 e...
3
  #include <boost/math/special_functions/bessel.hpp>
9339fbad   David Mayerich   implementing mie ...
4
5
6
  
  #include "scalarwave.h"
  #include "../math/bessel.h"
31262e83   David Mayerich   GPU implementatio...
7
  #include "../cuda/cudatools/devices.h"
9339fbad   David Mayerich   implementing mie ...
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  #include <cmath>
  
  namespace stim{
  
  
  /// Calculate the scattering coefficients for a spherical scatterer
  template<typename T>
  void B_coefficients(stim::complex<T>* B, T a, T k, stim::complex<T> n, int Nl){
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	double* j_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* y_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dj_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dy_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  
  	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
  	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)
  
  	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
  	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a
  
  	stim::complex<double> h_ka, dh_ka;
  	stim::complex<double> numerator, denominator;
  	stim::complex<double> i(0, 1);
31262e83   David Mayerich   GPU implementatio...
38
  	for(int l = 0; l <= Nl; l++){
9339fbad   David Mayerich   implementing mie ...
39
40
41
42
43
44
45
46
  		h_ka.r = j_ka[l];
  		h_ka.i = y_ka[l];
  		dh_ka.r = dj_ka[l];
  		dh_ka.i = dy_ka[l];
  
  		numerator = j_ka[l] * dj_kna[l] * (stim::complex<double>)n - j_kna[l] * dj_ka[l];
  		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
  		B[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
9339fbad   David Mayerich   implementing mie ...
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  	}
  }
  
  template<typename T>
  void A_coefficients(stim::complex<T>* A, T a, T k, stim::complex<T> n, int Nl){
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	double* j_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* y_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dj_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dy_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  
  	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
  	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)
  
  	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
  	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a
  
  	stim::complex<double> h_ka, dh_ka;
  	stim::complex<double> numerator, denominator;
  	stim::complex<double> i(0, 1);
  	for(size_t l = 0; l <= Nl; l++){
  		h_ka.r = j_ka[l];
  		h_ka.i = y_ka[l];
  		dh_ka.r = dj_ka[l];
  		dh_ka.i = dy_ka[l];
  
  		numerator = j_ka[l] * dh_ka - dj_ka[l] * h_ka;
  		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
  		A[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
  	}
  }
  
31262e83   David Mayerich   GPU implementatio...
85
  #define LOCAL_NL	16
9339fbad   David Mayerich   implementing mie ...
86
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
87
  __global__ void cuda_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T r_min, T dr, size_t N_hB, int Nl){
31262e83   David Mayerich   GPU implementatio...
88
  	extern __shared__ stim::complex<T> shared_hB[];		//declare the list of waves in shared memory
9339fbad   David Mayerich   implementing mie ...
89
90
  
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
31262e83   David Mayerich   GPU implementatio...
91
  	if(i >= N) return;													//exit if this thread is outside the array
9339fbad   David Mayerich   implementing mie ...
92
93
94
95
96
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  	
31262e83   David Mayerich   GPU implementatio...
97
98
  	T r = p.len();														//calculate the distance from the sphere
  	if(r < a) return;													//exit if the point is inside the sphere (we only calculate the internal field)
8309b07a   David Mayerich   fixed some vec3 e...
99
  	T fij = (r - r_min)/dr;											//FP index into the spherical bessel LUT
31262e83   David Mayerich   GPU implementatio...
100
101
  	size_t ij = (size_t) fij;											//convert to an integral index
  	T alpha = fij - ij;													//calculate the fractional portion of the index
8309b07a   David Mayerich   fixed some vec3 e...
102
103
  	size_t n0j = ij * (Nl + 1);												//start of the first entry in the LUT
  	size_t n1j = (ij+1) * (Nl + 1);											//start of the second entry in the LUT
9339fbad   David Mayerich   implementing mie ...
104
105
  
  	T cos_phi;	
31262e83   David Mayerich   GPU implementatio...
106
107
108
  	T Pl_2, Pl_1, Pl;														//declare registers to store the previous two Legendre polynomials
  	
  	stim::complex<T> hBl;
9339fbad   David Mayerich   implementing mie ...
109
110
  	stim::complex<T> Ei = 0;											//create a register to store the result
  	int l;
31262e83   David Mayerich   GPU implementatio...
111
  
8309b07a   David Mayerich   fixed some vec3 e...
112
113
  	stim::complex<T> hlBl[LOCAL_NL+1];									//the first LOCAL_NL components are stored in registers for speed
  	int shared_start = threadIdx.x * (Nl - LOCAL_NL);					//wrap up some operations so that they aren't done in the main loops
31262e83   David Mayerich   GPU implementatio...
114
  
8309b07a   David Mayerich   fixed some vec3 e...
115
  	#pragma unroll LOCAL_NL+1											//copy the first LOCAL_NL+1 h_l * B_l components to registers
31262e83   David Mayerich   GPU implementatio...
116
117
118
  	for(l = 0; l <= LOCAL_NL; l++)
  		hlBl[l] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
  	
8309b07a   David Mayerich   fixed some vec3 e...
119
  	for(l = LOCAL_NL+1; l <= Nl; l++)									//copy any additional h_l * B_l components to shared memory
31262e83   David Mayerich   GPU implementatio...
120
121
  		shared_hB[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
  
8309b07a   David Mayerich   fixed some vec3 e...
122
  	for(size_t w = 0; w < nW; w++){										//for each plane wave
9339fbad   David Mayerich   implementing mie ...
123
  		cos_phi = p.norm().dot(W[w].kvec().norm());						//calculate the cosine of the angle between the k vector and the direction from the sphere
8309b07a   David Mayerich   fixed some vec3 e...
124
  		Pl_2 = 1;														//the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
31262e83   David Mayerich   GPU implementatio...
125
  		Pl_1 = cos_phi;
8309b07a   David Mayerich   fixed some vec3 e...
126
  		Ei += W[w].E() * hlBl[0] * Pl_2;								//unroll the first two orders using the initial steps of the Legendre recursive relation
31262e83   David Mayerich   GPU implementatio...
127
128
  		Ei += W[w].E() * hlBl[1] * Pl_1;		
  
8309b07a   David Mayerich   fixed some vec3 e...
129
  		#pragma unroll LOCAL_NL-1										//unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
31262e83   David Mayerich   GPU implementatio...
130
  		for(l = 2; l <= LOCAL_NL; l++){
8309b07a   David Mayerich   fixed some vec3 e...
131
132
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);	//calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
  			Ei += W[w].E() * hlBl[l] * Pl;								//calculate and sum the current field order
31262e83   David Mayerich   GPU implementatio...
133
  			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
9339fbad   David Mayerich   implementing mie ...
134
  			Pl_1 = Pl;
31262e83   David Mayerich   GPU implementatio...
135
  		}
9339fbad   David Mayerich   implementing mie ...
136
  
8309b07a   David Mayerich   fixed some vec3 e...
137
138
139
140
141
  		for(l = LOCAL_NL+1; l <= Nl; l++){											//do the same as above, except for any additional orders that are stored in shared memory (not registers)
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);				//again, this is where most computation in the kernel occurs
  			Ei += W[w].E() * shared_hB[shared_start + l - LOCAL_NL - 1] * Pl;
  			Pl_2 = Pl_1;															//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;			
9339fbad   David Mayerich   implementing mie ...
142
  		}
9339fbad   David Mayerich   implementing mie ...
143
  	}
31262e83   David Mayerich   GPU implementatio...
144
  	E[i] += Ei;															//copy the result to device memory
9339fbad   David Mayerich   implementing mie ...
145
146
147
  }
  
  template<typename T>
31262e83   David Mayerich   GPU implementatio...
148
149
150
  void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T kr_min, T dkr, size_t N_hB, size_t Nl){
  	
  	size_t max_shared_mem = stim::sharedMemPerBlock();	
8309b07a   David Mayerich   fixed some vec3 e...
151
  	size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
31262e83   David Mayerich   GPU implementatio...
152
153
  	std::cout<<"hl*Bl array size:  "<<hBl_array<<std::endl;
  	std::cout<<"shared memory:     "<<max_shared_mem<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
154
  	int threads = (int)((max_shared_mem / hBl_array) / 32 * 32);
31262e83   David Mayerich   GPU implementatio...
155
156
157
158
159
160
161
162
  	std::cout<<"threads per block: "<<threads<<std::endl;
  	dim3 blocks((unsigned)(N / threads + 1));										//calculate the optimal number of blocks
  
  	size_t shared_mem;
  	if(Nl <= LOCAL_NL) shared_mem = 0;
  	else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL);				//amount of shared memory to allocate
  	std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
  	cuda_scalar_mie_scatter<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, hB, kr_min, dkr, N_hB, (int)Nl);	//call the kernel
31262e83   David Mayerich   GPU implementatio...
163
164
165
166
167
168
169
170
171
172
173
174
175
  }
  
  template<typename T>
  __global__ void cuda_dist(T* r, T* x, T* y, T* z, size_t N){
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
  	if(i >= N) return;													//exit if this thread is outside the array
  
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  
  	r[i] = p.len();
9339fbad   David Mayerich   implementing mie ...
176
177
178
179
180
181
182
183
184
185
186
187
  }
  /// Calculate the scalar Mie solution for the scattered field produced by a single plane wave
  
  /// @param E is a pointer to the destination field values
  /// @param N is the number of points used to calculate the field
  /// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
  /// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
  /// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
  /// @param W is an array of planewaves that will be scattered
  /// @param a is the radius of the sphere
  /// @param n is the complex refractive index of the sphere
  template<typename T>
31262e83   David Mayerich   GPU implementatio...
188
  void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, T r_spacing = 0.1){
9339fbad   David Mayerich   implementing mie ...
189
190
191
  	//calculate the necessary number of orders required to represent the scattered field
  	T k = W[0].kmag();
  
31262e83   David Mayerich   GPU implementatio...
192
193
194
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
  	std::cout<<"Nl: "<<Nl<<std::endl;
9339fbad   David Mayerich   implementing mie ...
195
196
197
198
199
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
  	B_coefficients(B, a, k, n, Nl);
  
31262e83   David Mayerich   GPU implementatio...
200
  #ifdef CUDA_FOUND
9339fbad   David Mayerich   implementing mie ...
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  	stim::complex<T>* dev_E;										//allocate space for the field
  	cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
  	cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
  	//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>));				//set the field to zero (necessary because a sum is used)
  
  	//	COORDINATES
  	T* dev_x = NULL;												//allocate space and copy the X coordinate (if specified)
  	if(x != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_y = NULL;												//allocate space and copy the Y coordinate (if specified)
  	if(y != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_z = NULL;												//allocate space and copy the Z coordinate (if specified)
  	if(z != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  
  	//	PLANE WAVES
  	stim::scalarwave<T>* dev_W;																//allocate space and copy plane waves
  	HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
  	HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
  
9339fbad   David Mayerich   implementing mie ...
228
  	// BESSEL FUNCTION LOOK-UP TABLE
31262e83   David Mayerich   GPU implementatio...
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  	//calculate the distance from the sphere center
  	T* dev_r;
  	HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
  		
  	int threads = stim::maxThreadsPerBlock();
  	dim3 blocks((unsigned)(N / threads + 1));
  	cuda_dist<T> <<< blocks, threads >>>(dev_r, dev_x, dev_y, dev_z, N);
  
  	//Find the minimum and maximum values of r
      cublasStatus_t stat;
      cublasHandle_t handle;
  
  	stat = cublasCreate(&handle);							//create a cuBLAS handle
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS initialization failed\n");
  		exit(1);
  	}
  
  	int i_min, i_max;
  	stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate minimum r value.\n");
  		exit(1);
  	}
  	stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate maximum r value.\n");
  		exit(1);
  	}
  
8309b07a   David Mayerich   fixed some vec3 e...
259
260
  	i_min--;				//cuBLAS uses 1-based indexing for Fortran compatibility
  	i_max--;
31262e83   David Mayerich   GPU implementatio...
261
262
263
264
  	T r_min, r_max;											//allocate space to store the minimum and maximum values
  	HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
  	HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
  
8309b07a   David Mayerich   fixed some vec3 e...
265
  	r_min = max(r_min, a);									//if the radius of the sphere is larger than r_min, change r_min to a (the scattered field doesn't exist inside the sphere)
31262e83   David Mayerich   GPU implementatio...
266
  
9339fbad   David Mayerich   implementing mie ...
267
  	//size_t Nlut_j = (size_t)((r_max - r_min) / r_spacing + 1);			//number of values in the look-up table based on the user-specified spacing along r
31262e83   David Mayerich   GPU implementatio...
268
  	size_t N_hB_lut = (size_t)((r_max - r_min) / r_spacing + 1);
9339fbad   David Mayerich   implementing mie ...
269
  
8309b07a   David Mayerich   fixed some vec3 e...
270
271
  	//T kr_min = k * r_min;
  	//T kr_max = k * r_max;
9339fbad   David Mayerich   implementing mie ...
272
273
274
275
276
277
278
279
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	double* jv = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* yv = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* djv= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) );
  
31262e83   David Mayerich   GPU implementatio...
280
281
  	size_t hB_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_hB_lut;
  	stim::complex<T>* hB_lut = (stim::complex<T>*) malloc(hB_bytes);													//pointer to the look-up table
8309b07a   David Mayerich   fixed some vec3 e...
282
  	T dr = (r_max - r_min) / (N_hB_lut-1);												//distance between values in the LUT
31262e83   David Mayerich   GPU implementatio...
283
284
  	std::cout<<"LUT jl bytes:  "<<hB_bytes<<std::endl;
  	stim::complex<T> hl;
8309b07a   David Mayerich   fixed some vec3 e...
285
286
  	for(size_t ri = 0; ri < N_hB_lut; ri++){													//for each value in the LUT
  		stim::bessjyv_sph<double>(Nl, k * (r_min + ri * dr), vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
9339fbad   David Mayerich   implementing mie ...
287
  		for(size_t l = 0; l <= Nl; l++){													//for each order
31262e83   David Mayerich   GPU implementatio...
288
289
290
  			hl.r = (T)jv[l];
  			hl.i = (T)yv[l];
  
8309b07a   David Mayerich   fixed some vec3 e...
291
292
  			hB_lut[ri * (Nl + 1) + l] = hl * B[l];										//store the bessel function result
  			//std::cout<<hB_lut[ri * (Nl + 1) + l]<<std::endl;
9339fbad   David Mayerich   implementing mie ...
293
294
  		}
  	}
8309b07a   David Mayerich   fixed some vec3 e...
295
296
297
  	T* real_lut = (T*) malloc(hB_bytes/2);
  	stim::real(real_lut, hB_lut, N_hB_lut);
  	stim::cpu2image<T>(real_lut, "hankel_B.bmp", Nl+1, N_hB_lut, stim::cmBrewer);
9339fbad   David Mayerich   implementing mie ...
298
299
  
  	//Allocate device memory and copy everything to the GPU
31262e83   David Mayerich   GPU implementatio...
300
301
302
  	stim::complex<T>* dev_hB_lut;
  	HANDLE_ERROR( cudaMalloc(&dev_hB_lut, hB_bytes) );
  	HANDLE_ERROR( cudaMemcpy(dev_hB_lut, hB_lut, hB_bytes, cudaMemcpyHostToDevice) );
9339fbad   David Mayerich   implementing mie ...
303
  
8309b07a   David Mayerich   fixed some vec3 e...
304
  	gpu_scalar_mie_scatter<T>(dev_E, N, dev_x, dev_y, dev_z, dev_W, W.size(), a, n, dev_hB_lut, r_min, dr, N_hB_lut, Nl);
9339fbad   David Mayerich   implementing mie ...
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
  
  	cudaMemcpy(E, dev_E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost);			//copy the field from device memory
  
  	if(x != NULL) cudaFree(dev_x);														//free everything
  	if(y != NULL) cudaFree(dev_y);
  	if(z != NULL) cudaFree(dev_z);
  	cudaFree(dev_E);
  #else
  	
  
  	//allocate space to store the bessel function call results
  	double vm;										
  	double* j_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* y_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dj_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dy_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
  
  	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
  
  	T r, kr, cos_phi;
  	stim::complex<T> h;
  	for(size_t i = 0; i < N; i++){
  		stim::vec3<T> p;															//declare a 3D point
  	
  		(x == NULL) ? p[0] = 0 : p[0] = x[i];										// test for NULL values and set positions
  		(y == NULL) ? p[1] = 0 : p[1] = y[i];
  		(z == NULL) ? p[2] = 0 : p[2] = z[i];
  		r = p.len();
  		if(r >= a){
  			for(size_t w = 0; w < W.size(); w++){
  				kr = p.len() * W[w].kmag();											//calculate k*r
  				stim::bessjyv_sph<double>(Nl, kr, vm, j_kr, y_kr, dj_kr, dy_kr);
  				cos_phi = p.norm().dot(W[w].kvec().norm());							//calculate the cosine of the angle from the propagating direction
  				stim::legendre<T>(Nl, cos_phi, P);
  
  				for(size_t l = 0; l <= Nl; l++){
  					h.r = j_kr[l];
  					h.i = y_kr[l];
  					E[i] += W[w].E() * B[l] * h * P[l];
  				}
  			}
  		}
  	}
  #endif
  }
  
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
352
  void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, T r_spacing = 0.1){
9339fbad   David Mayerich   implementing mie ...
353
  	std::vector< stim::scalarwave<T> > W(1, w);
8309b07a   David Mayerich   fixed some vec3 e...
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
  	cpu_scalar_mie_scatter(E, N, x, y, z, W, a, n, r_spacing);
  }
  
  template<typename T>
  __global__ void cuda_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, int Nl){
  	extern __shared__ stim::complex<T> shared_jA[];		//declare the list of waves in shared memory
  
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
  	if(i >= N) return;													//exit if this thread is outside the array
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  	
  	T r = p.len();														//calculate the distance from the sphere
  	if(r > a) return;													//exit if the point is inside the sphere (we only calculate the internal field)
  	T fij = (r - r_min)/dr;											//FP index into the spherical bessel LUT
  	size_t ij = (size_t) fij;											//convert to an integral index
  	T alpha = fij - ij;													//calculate the fractional portion of the index
  	size_t n0j = ij * (Nl + 1);												//start of the first entry in the LUT
  	size_t n1j = (ij+1) * (Nl + 1);											//start of the second entry in the LUT
  
  	T cos_phi;	
  	T Pl_2, Pl_1, Pl;														//declare registers to store the previous two Legendre polynomials
  	
  	stim::complex<T> jAl;
  	stim::complex<T> Ei = 0;											//create a register to store the result
  	int l;
  
  	stim::complex<T> jlAl[LOCAL_NL+1];									//the first LOCAL_NL components are stored in registers for speed
  	int shared_start = threadIdx.x * (Nl - LOCAL_NL);					//wrap up some operations so that they aren't done in the main loops
  
  	#pragma unroll LOCAL_NL+1											//copy the first LOCAL_NL+1 h_l * B_l components to registers
  	for(l = 0; l <= LOCAL_NL; l++)
  		jlAl[l] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
  	
  	for(l = LOCAL_NL+1; l <= Nl; l++)									//copy any additional h_l * B_l components to shared memory
  		shared_jA[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
  
  	for(size_t w = 0; w < nW; w++){										//for each plane wave
  		if(r == 0) cos_phi = 0;
  		else
  			cos_phi = p.norm().dot(W[w].kvec().norm());						//calculate the cosine of the angle between the k vector and the direction from the sphere
  		Pl_2 = 1;														//the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
  		Pl_1 = cos_phi;
  		Ei += W[w].E() * jlAl[0] * Pl_2;								//unroll the first two orders using the initial steps of the Legendre recursive relation
  		Ei += W[w].E() * jlAl[1] * Pl_1;		
  
  		#pragma unroll LOCAL_NL-1										//unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
  		for(l = 2; l <= LOCAL_NL; l++){
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);	//calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
  			Ei += W[w].E() * jlAl[l] * Pl;								//calculate and sum the current field order
  			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;
  		}
  
  		for(l = LOCAL_NL+1; l <= Nl; l++){											//do the same as above, except for any additional orders that are stored in shared memory (not registers)
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);				//again, this is where most computation in the kernel occurs
  			Ei += W[w].E() * shared_jA[shared_start + l - LOCAL_NL - 1] * Pl;
  			Pl_2 = Pl_1;															//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;			
  		}
  	}
  	E[i] = Ei;															//copy the result to device memory
  }
  
  template<typename T>
  void gpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, size_t Nl){
  	
  	size_t max_shared_mem = stim::sharedMemPerBlock();	
  	size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
  	std::cout<<"hl*Bl array size:  "<<hBl_array<<std::endl;
  	std::cout<<"shared memory:     "<<max_shared_mem<<std::endl;
  	int threads = (int)((max_shared_mem / hBl_array) / 32 * 32);
  	std::cout<<"threads per block: "<<threads<<std::endl;
  	dim3 blocks((unsigned)(N / threads + 1));										//calculate the optimal number of blocks
  
  	size_t shared_mem;
  	if(Nl <= LOCAL_NL) shared_mem = 0;
  	else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL);				//amount of shared memory to allocate
  	std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
  	cuda_scalar_mie_internal<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, jA, r_min, dr, N_jA, (int)Nl);	//call the kernel
9339fbad   David Mayerich   implementing mie ...
436
437
438
439
440
441
442
443
444
445
446
447
448
  }
  
  /// Calculate the scalar Mie solution for the internal field produced by a single plane wave scattered by a sphere
  
  /// @param E is a pointer to the destination field values
  /// @param N is the number of points used to calculate the field
  /// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
  /// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
  /// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
  /// @param w is a planewave that will be scattered
  /// @param a is the radius of the sphere
  /// @param n is the complex refractive index of the sphere
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
449
450
  void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector< stim::scalarwave<T> > W, T a, stim::complex<T> n, T r_spacing = 0.1){
  //calculate the necessary number of orders required to represent the scattered field
9339fbad   David Mayerich   implementing mie ...
451
452
  	T k = W[0].kmag();
  
8309b07a   David Mayerich   fixed some vec3 e...
453
454
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
31262e83   David Mayerich   GPU implementatio...
455
  	std::cout<<"Nl: "<<Nl<<std::endl;
9339fbad   David Mayerich   implementing mie ...
456
457
458
459
460
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* A = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
  	A_coefficients(A, a, k, n, Nl);
  
8309b07a   David Mayerich   fixed some vec3 e...
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
  #ifdef CUDA_FOUND
  	stim::complex<T>* dev_E;										//allocate space for the field
  	cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
  	cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
  	//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>));				//set the field to zero (necessary because a sum is used)
  
  	//	COORDINATES
  	T* dev_x = NULL;												//allocate space and copy the X coordinate (if specified)
  	if(x != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_y = NULL;												//allocate space and copy the Y coordinate (if specified)
  	if(y != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_z = NULL;												//allocate space and copy the Z coordinate (if specified)
  	if(z != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  
  	//	PLANE WAVES
  	stim::scalarwave<T>* dev_W;																//allocate space and copy plane waves
  	HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
  	HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
  
  	// BESSEL FUNCTION LOOK-UP TABLE
  	//calculate the distance from the sphere center
  	T* dev_r;
  	HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
  		
  	int threads = stim::maxThreadsPerBlock();
  	dim3 blocks((unsigned)(N / threads + 1));
  	cuda_dist<T> <<< blocks, threads >>>(dev_r, dev_x, dev_y, dev_z, N);
  
  	//Find the minimum and maximum values of r
      cublasStatus_t stat;
      cublasHandle_t handle;
  
  	stat = cublasCreate(&handle);							//create a cuBLAS handle
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS initialization failed\n");
  		exit(1);
  	}
  
  	int i_min, i_max;
  	stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate minimum r value.\n");
  		exit(1);
  	}
  	stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate maximum r value.\n");
  		exit(1);
  	}
  
  	i_min--;				//cuBLAS uses 1-based indexing for Fortran compatibility
  	i_max--;
  	T r_min, r_max;											//allocate space to store the minimum and maximum values
  	HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
  	HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
  
  	r_max = min(r_max, a);		//the internal field doesn't exist outside of the sphere
  
  	size_t N_jA_lut = (size_t)((r_max - r_min) / r_spacing + 1);
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	stim::complex<double>* jv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* yv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* djv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dyv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	size_t jA_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_jA_lut;
  	stim::complex<T>* jA_lut = (stim::complex<T>*) malloc(jA_bytes);													//pointer to the look-up table
  	T dr = (r_max - r_min) / (N_jA_lut-1);												//distance between values in the LUT
  	std::cout<<"LUT jl bytes:  "<<jA_bytes<<std::endl;
  	stim::complex<T> hl;
  	stim::complex<double> nd = (stim::complex<double>)n;
  	for(size_t ri = 0; ri < N_jA_lut; ri++){													//for each value in the LUT
  		stim::cbessjyva_sph<double>(Nl, nd * k * (r_min + ri * dr), vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
  		for(size_t l = 0; l <= Nl; l++){													//for each order
  			jA_lut[ri * (Nl + 1) + l] = (stim::complex<T>)(jv[l] * (stim::complex<double>)A[l]);										//store the bessel function result
  		}
  	}
  
  	//Allocate device memory and copy everything to the GPU
  	stim::complex<T>* dev_jA_lut;
  	HANDLE_ERROR( cudaMalloc(&dev_jA_lut, jA_bytes) );
  	HANDLE_ERROR( cudaMemcpy(dev_jA_lut, jA_lut, jA_bytes, cudaMemcpyHostToDevice) );
  
  	gpu_scalar_mie_internal<T>(dev_E, N, dev_x, dev_y, dev_z, dev_W, W.size(), a, n, dev_jA_lut, r_min, dr, N_jA_lut, Nl);
  
  	cudaMemcpy(E, dev_E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost);			//copy the field from device memory
  
  	if(x != NULL) cudaFree(dev_x);														//free everything
  	if(y != NULL) cudaFree(dev_y);
  	if(z != NULL) cudaFree(dev_z);
  	cudaFree(dev_E);
  #else
  
9339fbad   David Mayerich   implementing mie ...
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
  	//allocate space to store the bessel function call results
  	double vm;										
  	stim::complex<double>* j_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
  
  	T r, cos_phi;
  	stim::complex<double> knr;
  	stim::complex<T> h;
  	for(size_t i = 0; i < N; i++){
  		stim::vec3<T> p;									//declare a 3D point
  	
  		(x == NULL) ? p[0] = 0 : p[0] = x[i];				// test for NULL values and set positions
  		(y == NULL) ? p[1] = 0 : p[1] = y[i];
  		(z == NULL) ? p[2] = 0 : p[2] = z[i];
  		r = p.len();
  		if(r < a){
  			E[i] = 0;
  			for(size_t w = 0; w < W.size(); w++){
  				knr = (stim::complex<double>)n * p.len() * W[w].kmag();							//calculate k*n*r
  
  				stim::cbessjyva_sph<double>(Nl, knr, vm, j_knr, y_knr, dj_knr, dy_knr);
  				if(r == 0)
  					cos_phi = 0;
  				else
  					cos_phi = p.norm().dot(W[w].kvec().norm());				//calculate the cosine of the angle from the propagating direction
  				stim::legendre<T>(Nl, cos_phi, P);
  								
  				for(size_t l = 0; l <= Nl; l++){
  					E[i] += W[w].E() * A[l] * (stim::complex<T>)j_knr[l] * P[l];
  				}
  			}
  		}
  	}
8309b07a   David Mayerich   fixed some vec3 e...
602
  #endif
9339fbad   David Mayerich   implementing mie ...
603
604
605
  }
  
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
606
  void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, T r_spacing = 0.1){
9339fbad   David Mayerich   implementing mie ...
607
  	std::vector< stim::scalarwave<T> > W(1, w);
8309b07a   David Mayerich   fixed some vec3 e...
608
  	cpu_scalar_mie_internal(E, N, x, y, z, W, a, n, r_spacing);
9339fbad   David Mayerich   implementing mie ...
609
610
611
612
613
  }
  
  }
  
  #endif