Blame view

python/optics.py 29.7 KB
057bed5a   David Mayerich   added optics pyth...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
  # -*- coding: utf-8 -*-
  """
  Created on Fri Jun 22 16:22:17 2018
  
  @author: david
  """
  
  import numpy as np
  import scipy as sp
  import scipy.ndimage
  import matplotlib
  import math
  import matplotlib.pyplot as plt
  
  #adjust the components of E0 so that they are orthogonal to d
      #if d is 2D, the z component is calculated such that ||[dx, dy, dz]||=1
  def orthogonalize(E, d):
      if d.shape[-1] == 2:
          dz = 1 - d[..., 0]**2 - d[..., 1]**2
          d = np.append(d, dz)
      s = np.cross(E, d)
      
      dE = np.cross(d, s)
      return dE
      #return dE/np.linalg.norm(dE) * np.linalg.norm(E)
  
  def intensity(E):
      Econj = np.conj(E)
      I = np.sum(E*Econj, axis=-1)
      return np.real(I)
  
  class planewave:
      #implement all features of a plane wave
      #   k, E, frequency (or wavelength in a vacuum)--l
      #   try to enforce that E and k have to be orthogonal
      
      #initialization function that sets these parameters when a plane wave is created
      def __init__ (self, k, E):
          
          self.k = np.array(k)              
          self.E = E
          
          if ( np.linalg.norm(k) > 1e-15 and np.linalg.norm(E) >1e-15):
              s = np.cross(k, E)              #compute an orthogonal side vector
              s = s / np.linalg.norm(s)       #normalize it
              Edir = np.cross(s, k)              #compute new E vector which is orthogonal
              self.k = np.array(k)
              self.E = Edir / np.linalg.norm(Edir) * np.linalg.norm(E)
      
      def __str__(self):
          return str(self.k) + "\n" + str(self.E)     #for verify field vectors use print command
  
      def kmag(self):
          return math.sqrt(self.k[0] ** 2 + self.k[1] ** 2 + self.k[2] ** 2)
      
      #function that renders the plane wave given a set of coordinates
      def evaluate(self, X, Y, Z):
          k_dot_r = self.k[0] * X + self.k[1] * Y + self.k[2] * Z     #phase term k*r
          ex = np.exp(1j * k_dot_r)       #E field equation  = E0 * exp (i * (k * r)) here we simply set amplitude as 1
          Ef = ex[..., None] * self.E
          return Ef
  
  
  class objective:
      
      #initialize an objective lens
      #   sin_alpha is the sine of the angle subtended by the objective (numerical aperture in a refractive index of 1.0)
      #   n is the real refractive index of the imaging media (default air)
      #   N is the resolution of the 2D objective map (field at the input and output aperture)
      def __init__(self, sin_alpha, n, N):
          
          #set member variables
          self.sin_alpha = sin_alpha
          self.n = n
          
          #calculate the transfer function from the back aperture to the front aperture
          self.N = N
          self._CI(N)
          self._CR(N)        
      
         
      #calculates the basis vectors describing the mapping between the back and front aperture
      def _calc_bases(self, N):
          
          #calculate the (sx, sy) coordinates (angular spectrum) corresponding to each position in the entrance/exit pupil
          s = np.linspace(-self.sin_alpha, self.sin_alpha, N)
          [SX, SY] = np.meshgrid(s, s)
          S_SQ = SX**2 + SY**2                                  #calculate sx^2 + sy^2
          
          BAND_M = S_SQ <= self.sin_alpha**2                    #find a mask for pixels within the bandpass of the objective
          self.BAND_M = BAND_M
          
          #pull out pixels that pass through the objective bandpass        
          SX = SX[BAND_M]
          SY = SY[BAND_M]
          S_SQ = S_SQ[BAND_M]
          SZ = np.sqrt(1 - S_SQ)                            #calculate sz = sqrt(1 - sx^2 - sy^2) in normalized (-1, 1) coordinates
          
          #calculate the apodization functions for each polarization
          self.FS = 1.0 / np.sqrt(SZ)
          self.FP = self.FS
          
          #calculate the S and P basis vectors
          THETA = np.arctan2(SY, SX)
          
          SX_SXSY = np.cos(THETA)
          SY_SXSY = np.sin(THETA)
          
          v_size = (len(SX), 3)
          VS_VSP = np.zeros(v_size)
          VP = np.zeros(v_size)
          VPP = np.zeros(v_size)
          
          VS_VSP[:, 0] = -SY_SXSY
          VS_VSP[:, 1] = SX_SXSY
          
          VP[:, 0] = -SX_SXSY
          VP[:, 1] = -SY_SXSY
          
          SXSY = np.sqrt(S_SQ)
          VPPZ = np.zeros(SXSY.shape)
          DC_M = SXSY > 0
          VPPZ[DC_M] = S_SQ[DC_M] / SXSY[DC_M]
          VPP[:, 0] = -SX_SXSY * SZ
          VPP[:, 1] = -SY_SXSY * SZ
          VPP[:, 2] = VPPZ
          
          return [VS_VSP, VP, VPP]        
          
          
      #calculate the transfer function that maps the back aperture field to the front aperture field (Eq. 19 in Davis et al.)
      def _CI(self, N):
          [VS_VSP, VP, VPP] = self._calc_bases(N)
          
          VSP_VST = np.matmul(VS_VSP[:, :, None], VS_VSP[:, None, :])
          VPP_VPT = np.matmul(VPP[:, :, None], VP[:, None, :])
          
          self.CI = self.FS[:, None, None] * VSP_VST + self.FP[:, None, None] * VPP_VPT      
          
      def _CR(self, N):
          [VS_VSP, VP, VPP] = self._calc_bases(N)
          
          VSP_VST = np.matmul(VS_VSP[:, :, None], VS_VSP[:, None, :])
          VP_VPPT = np.matmul(VP[:, :, None], VPP[:, None, :])
          
          self.CR = 1.0 / self.FS[:, None, None] * VSP_VST + 1.0 / self.FP[:, None, None] * VP_VPPT
          
      #condenses a field defined at the back aperture of the objective
      #   E is a 3xNxN image of the field at the back aperture
      def back2front(self, E):
          Ein = E[self.BAND_M, :, None]
          
          Efront = np.zeros((self.N, self.N, 3), dtype=np.complex128)
          Efront[self.BAND_M, :] = np.squeeze(np.matmul(self.CI, Ein))
          
          return Efront
      
          #propagates a field from the front aperture of the objective to the back aperture
      #   E is a 3xNxN image of the field at the front aperture
      def front2back(self, E):
          Ein = E[self.BAND_M, :, None]
          
          Eback = np.zeros((self.N, self.N, 3), dtype=np.complex128)
          Eback[self.BAND_M, :] = np.squeeze(np.matmul(self.CR, Ein))
          
          return Eback
      
      #calculates the image at the focus given the image at the back aperture
      #   E is the field at the back aperture of the objective
      #   k0 is the wavenumber in a vacuum (2pi/lambda_0)
      def focus(self, E, k0, RX, RY, RZ):
          
          #calculate the angular spectrum at the front aperture
          Ef = self.back2front(E)
          
          #generate an array describing the valid components of S
          s = np.linspace(-self.sin_alpha, self.sin_alpha, self.N)
          [SX, SY] = np.meshgrid(s, s)
          S = [SX[self.BAND_M], SY[self.BAND_M]]        
          SXSY_SQ = S[0]**2 + S[1]**2
          S.append(np.sqrt(1 - SXSY_SQ))
          S = np.array(S)
          
          
          #calculate the k vector (accounting for both k0 and the refractive index of the immersion medium)
          K = k0 * self.n * np.transpose(S)[:, None, :]
          
          #calculate the dot product of K and R
          R = np.moveaxis(np.array([RX, RY, RZ]), 0, -1)[..., None, :, None]
          
          K_DOT_R = np.squeeze(np.matmul(K, R))
          EX = np.exp(1j * K_DOT_R)[..., None]
          Ewaves = EX * Ef[self.BAND_M]
          
          Efocus = np.sum(Ewaves, -2)
          return Efocus
  
  class gaussian_beam:
      
      #generate a beam
      #   (Ex, Ey) specifies the polarization
      #   p specifies the focal point
      #   l is the free-space wavelength
      #   sigma_p is the standard deviation of the Gaussian beam at the focal point
      #   amp is the amplitude of the DC component of the Gaussian beam
      def __init__(self, x_polar, y_polar, lambda_0=1, amp=1, sigma_p=None, sigma_k=None):
          self.E = [x_polar, y_polar]
          self.l = lambda_0
          
          #calculate the standard deviation of the Gaussian function in k-space 
          if(sigma_p is None and sigma_k is None):
              self.sigma = 2 * math.pi / lambda_0
          elif(sigma_p is not None):
              self.sigma = 1.0 / sigma_p
          else:
              self.sigma = sigma_k
              
          #self.s = self.sigma_p2k(sigma_p)
          self.A = amp
          
      #calculates the maximum k-space frequency supported by this beam    
      def kmax(self):
          return 2 * np.pi / self.l
      
      #calculate the standard deviation of the Gaussian function in k space given the std at the focal point
     # def sigma_p2k(self, sigma):
          
          # this code is based on: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf
          # f(r) = 1 / (2 pi sigma^2) e^(-r^2 / (2 sigma^2))
          # F(kx, ky) = f( |k_par| ) = e^( -2 pi^2 |k_par|^2 sigma^2 )
          
          # Basically, the Fourier transform of a normally distributed Gaussian is
          #   a non-scaled Gaussian with standard deviation 1/(2 pi sigma)        
          #return 1.0/(2 * math.pi * sigma)
          #return 1.0 / sigma
        
      
      def kspace(self, Kx, Ky):
          #sigma = self.s * (np.pi / self.l)
          #G = 1 / (2 * np.pi * sigma **2) * np.exp(- (0.5/(sigma**2)) * (Kx ** 2 + Ky ** 2))
          G = self.A * np.exp(- (Kx ** 2 + Ky ** 2) / (2 * self.sigma ** 2))
          
          #calculate k-vectors outside of the band-limit
          B = ((Kx ** 2 + Ky **2) > self.kmax() ** 2)
          
          #calculate Kz (required for calculating the Ez component of E)
          #Kz = np.lib.scimath.sqrt(self.kmax() ** 2 - Kx**2 - Ky**2)
          
          Ex = self.E[0] * G
          Ey = self.E[1] * G
          #Ez = -Kx/Kz * Ex
          Ez = np.zeros(Ex.shape)
          
          #set all values outside of the band limit to zero
          Ex[B] = 0
          Ey[B] = 0
          Ez[B] = 0
          
          return [Ex, Ey, Ez]
      
      # The PSF at the focal point is the convolution of a Bessel function and a Gaussian
      # This function calculates the parameters of the Gaussian function in terms of a*e^{-x^2 / (2*c^2)}
      #   a (return) is the scale factor for the Gaussian
      #   c (return) is the standard deviation
      def psf_gaussian(self):
          # this code is based on: http://mathworld.wolfram.com/FourierTransformGaussian.html
          #a = math.sqrt( 2 * math.pi * (self.s ** 2) )
          #c = 1.0 / (2 * math.pi * self.s)
          
          a = math.sqrt( (self.sigma ** 2) )
          c = 1.0 / (self.sigma)
          
          return [a, c]
      
      # The PSF at the focal point is the convolution of a Bessel function and a Gaussian
      # This function calculates the parameters of the bessel function in terms of a J_1(pi * a * x) / x
      def psf_bessel(self):
          return self.kmax() / math.pi  
      
      # calculate the beam point spread function at the focal plane
      #   D is the image extent for the square: (-D, D, -D, D)
      #   N is the number of spatial samples along one dimension of the image (NxN)
      #   order is the mathematical order of the calculation (in terms of the resolution of the FFT)
      def psf(self, D, N):
          
          [a, c] = self.psf_gaussian()
          alpha = self.psf_bessel()
          
          #calculate the sample positions along the x-axis
          x = np.linspace(-D, D, N)
          dx = x[1] - x[0]
          
          [X, Y] = np.meshgrid(x, x)
          R = np.sqrt(X**2 + Y**2)
          
          bessel = alpha * sp.special.j1(math.pi * alpha * R) / R
          
          return a * sp.ndimage.filters.gaussian_filter(bessel, c / dx)    
          
      
      #return the k-space transform of the beam at p as an NxN array
      def kspace_image(self, N):
          #calculate the band limit [-2*pi/lambda, 2*pi/lambda]
          kx = np.linspace(-self.kmax(), self.kmax(), N)
          ky = kx
          
          #generate a meshgrid for the field
          [Kx, Ky] = np.meshgrid(kx, ky)
  
          #generate a Gaussian with a standard deviation of sigma * pi/lambda
          return self.kspace(Kx, Ky)
      
      # calculate the practical band limit of the beam such that 
      # all frequencies higher than the returned values are less than epsilon
      def practical_band_limit(self, epsilon = 0.001):
          
          return min(self.sigma * math.sqrt(math.log(1.0/epsilon)), self.kmax())
          
          
      #return a plane wave decomposition of the beam using N plane waves
      def decompose(self, N):
          PW = []                     #create an empty list of plane waves
          
          # sample a cylinder and project those samples onto a unit sphere
          theta = np.random.uniform(0, 2*np.pi, N)
          
          # get the practical band limit to minimize sampling
          band_limit = self.practical_band_limit() / self.kmax()
          phi = np.arccos(np.random.uniform(1 - band_limit, 1, N))
          
          kx = -self.kmax() * np.sin(phi) * np.cos(theta)
          ky = -self.kmax() * np.sin(phi) * np.sin(theta)
          
          mc_weight = 2 * math.pi / N
          E0 = self.kspace(kx, ky)
          kz = np.sqrt(self.kmax() ** 2 - kx**2 - ky**2)
          
          for i in range(0, N):
              k = [kx[i], ky[i], kz[i]]
              E = [E0[0][i] * mc_weight, E0[1][i] * mc_weight, E0[2][i] * mc_weight]
              w = planewave(k, E)
              PW.append(w)
              
          return PW
      
  class layersample:
      
      #generate a layered sample based on a list of layer refractive indices
      #   layer_ri is a list of complex refractive indices for each layer
      #   z is the list of boundary positions along z
      def __init__(self, layer_ri, z):
          self.n = np.array(layer_ri).astype(np.complex128)
          self.z = np.array(z)
      
      #calculate the index of the field component associated with a layer
      #   l is the layer index [0, L)
      #   c is the component (x=0, y=1, z=2)
      #   d is the direction (0 = transmission, 1 = reflection)
      def i(self, l, c, d):
          i = l * 6 + d * 3 + c - 3
          return  i
      
      #create a matrix for a single plane wave specified by k and E
      #   d = [dx, dy] are the x and y coordinates of the normalized direction of propagation
      #   k0 is the free space wave number (2 pi / lambda0)
      #   E is the electric field vector
      
      def solve1(self, d, k0, E):
                  
          #s is the plane wave direction scaled by the refractive index
          s = np.array(d) * self.n[0]
  
          #allocate space for the matrix
          L = len(self.n)
          M = np.zeros((6*(L-1), 6*(L-1)), dtype=np.complex128)
          
          #allocate space for the RHS vector
          b = np.zeros(6*(L-1), dtype=np.complex128)
          
          #initialize a counter for the equation number
          ei = 0
          
          #calculate the sz component for each layer
          self.sz = np.zeros(L, dtype=np.complex128)
          for l in range(L):
              self.sz[l] = np.sqrt(self.n[l]**2 - s[0]**2 - s[1]**2)
          
          #set constraints based on Gauss' law
          for l in range(0, L):
              #sz = np.sqrt(self.n[l]**2 - s[0]**2 - s[1]**2)
              
              #set the upward components for each layer
              #   note that layer L-1 does not have a downward component
              #   David I, Equation 7
              if l != L-1:
                  M[ei, self.i(l, 0, 1)] = s[0]
                  M[ei, self.i(l, 1, 1)] = s[1]
                  M[ei, self.i(l, 2, 1)] = -self.sz[l]
                  ei = ei+1
              
              #set the downward components for each layer
              #   note that layer 0 does not have a downward component
              #   Davis I, Equation 6
              if l != 0:
                  M[ei, self.i(l, 0, 0)] = s[0]
                  M[ei, self.i(l, 1, 0)] = s[1]
                  M[ei, self.i(l, 2, 0)] = self.sz[l]
                  ei = ei+1            
              
          #enforce a continuous field across boundaries
          for l in range(1, L):
              sz0 = self.sz[l-1]
              sz1 = self.sz[l]
              A = np.exp(1j * k0 * sz0 * (self.z[l] - self.z[l-1]))
              if l < L - 1:
                  dl = self.z[l] - self.z[l+1]
                  arg = -1j * k0 * sz1 * dl
                  B = np.exp(arg)
              
              
              #if this is the second layer, use the simplified equations that account for the incident field
              if l == 1:
                  M[ei, self.i(0, 0, 1)] = 1
                  M[ei, self.i(1, 0, 0)] = -1
                  if L > 2:
                      #print(-B, M[ei, self.i(1, 0, 1)])
                      M[ei, self.i(1, 0, 1)] = -B
                      
                  b[ei] = -A * E[0]
                  ei = ei + 1
                  
                  M[ei, self.i(0, 1, 1)] = 1
                  M[ei, self.i(1, 1, 0)] = -1
                  if L > 2:
                      M[ei, self.i(1, 1, 1)] = -B
                  b[ei] = -A * E[1]
                  ei = ei + 1
                  
                  M[ei, self.i(0, 2, 1)] = s[1]
                  M[ei, self.i(0, 1, 1)] = sz0
                  M[ei, self.i(1, 2, 0)] = -s[1]
                  M[ei, self.i(1, 1, 0)] = sz1
                  if L > 2:
                      M[ei, self.i(1, 2, 1)] = -B*s[1]
                      M[ei, self.i(1, 1, 1)] = -B*sz1
                  b[ei] = A * sz0 * E[1] - A * s[1]*E[2]
                  ei = ei + 1
                  
                  M[ei, self.i(0, 0, 1)] = -sz0
                  M[ei, self.i(0, 2, 1)] = -s[0]
                  M[ei, self.i(1, 0, 0)] = -sz1
                  M[ei, self.i(1, 2, 0)] = s[0]
                  if L > 2:
                      M[ei, self.i(1, 0, 1)] = B*sz1
                      M[ei, self.i(1, 2, 1)] = B*s[0]
                  b[ei] = A * s[0] * E[2] - A * sz0 * E[0]
                  ei = ei + 1
              
              #if this is the last layer, use the simplified equations that exclude reflections from the last layer
              elif l == L-1:
                  M[ei, self.i(l-1, 0, 0)] = A
                  M[ei, self.i(l-1, 0, 1)] = 1
                  M[ei, self.i(l, 0, 0)] = -1
                  ei = ei + 1
                  
                  M[ei, self.i(l-1, 1, 0)] = A
                  M[ei, self.i(l-1, 1, 1)] = 1
                  M[ei, self.i(l, 1, 0)] = -1
                  ei = ei + 1
                  
                  M[ei, self.i(l-1, 2, 0)] = A*s[1]
                  M[ei, self.i(l-1, 1, 0)] = -A*sz0
                  M[ei, self.i(l-1, 2, 1)] = s[1]
                  M[ei, self.i(l-1, 1, 1)] = sz0
                  M[ei, self.i(l, 2, 0)] = -s[1]
                  M[ei, self.i(l, 1, 0)] = sz1
                  ei = ei + 1
                  
                  M[ei, self.i(l-1, 0, 0)] = A*sz0
                  M[ei, self.i(l-1, 2, 0)] = -A*s[0]
                  M[ei, self.i(l-1, 0, 1)] = -sz0
                  M[ei, self.i(l-1, 2, 1)] = -s[0]
                  M[ei, self.i(l, 0, 0)] = -sz1
                  M[ei, self.i(l, 2, 0)] = s[0]
                  ei = ei + 1
              #otherwise use the full set of boundary conditions
              else:
                  M[ei, self.i(l-1, 0, 0)] = A
                  M[ei, self.i(l-1, 0, 1)] = 1
                  M[ei, self.i(l, 0, 0)] = -1
                  M[ei, self.i(l, 0, 1)] = -B
                  ei = ei + 1
                  
                  M[ei, self.i(l-1, 1, 0)] = A
                  M[ei, self.i(l-1, 1, 1)] = 1
                  M[ei, self.i(l, 1, 0)] = -1
                  M[ei, self.i(l, 1, 1)] = -B
                  ei = ei + 1
                  
                  M[ei, self.i(l-1, 2, 0)] = A*s[1]
                  M[ei, self.i(l-1, 1, 0)] = -A*sz0
                  M[ei, self.i(l-1, 2, 1)] = s[1]
                  M[ei, self.i(l-1, 1, 1)] = sz0
                  M[ei, self.i(l, 2, 0)] = -s[1]
                  M[ei, self.i(l, 1, 0)] = sz1
                  M[ei, self.i(l, 2, 1)] = -B*s[1]
                  M[ei, self.i(l, 1, 1)] = -B*sz1
                  ei = ei + 1
                  
                  M[ei, self.i(l-1, 0, 0)] = A*sz0
                  M[ei, self.i(l-1, 2, 0)] = -A*s[0]
                  M[ei, self.i(l-1, 0, 1)] = -sz0
                  M[ei, self.i(l-1, 2, 1)] = -s[0]
                  M[ei, self.i(l, 0, 0)] = -sz1
                  M[ei, self.i(l, 2, 0)] = s[0]
                  M[ei, self.i(l, 0, 1)] = B*sz1
                  M[ei, self.i(l, 2, 1)] = B*s[0]
                  ei = ei + 1
                  
          #store the matrix and RHS vector (for debugging)        
          self.M = M
          self.b = b
          
          #evaluate the linear system
          P = np.linalg.solve(M, b)
          
          #save the results (also for debugging)
          self.P = P
          
          #store the coefficients for each layer
          self.Pt = np.zeros((3, L), np.complex128)
          self.Pr = np.zeros((3, L), np.complex128)
          for l in range(L):
              if l == 0:
                  self.Pt[:, 0] = [E[0], E[1], E[2]]
              else:
                  px = P[self.i(l, 0, 0)]
                  py = P[self.i(l, 1, 0)]
                  pz = P[self.i(l, 2, 0)]
                  self.Pt[:, l] = [px, py, pz]
                  
              if l == L-1:
                  self.Pr[:, L-1] = [0, 0, 0]
              else:
                  px = P[self.i(l, 0, 1)]
                  py = P[self.i(l, 1, 1)]
                  pz = P[self.i(l, 2, 1)]
                  self.Pr[:, l] = [px, py, pz]
          
          #store values required for evaluation
          #store k
          self.k = k0
          
          #store sx and sy
          self.s = np.array([s[0], s[1]])
          
          self.solved = True
      
      #evaluate a solved homogeneous substrate
      def evaluate(self, X, Y, Z):
          
          if not self.solved:
              print("ERROR: the layered substrate hasn't been solved")
              return
          
          #this code is a bit cumbersome and could probably be optimized
          #   Basically, it vectorizes everything by creating an image
          #   such that the value at each pixel is the corresponding layer
          #   that the pixel resides in. That index is then used to calculate
          #   the field within the layer
          
          #allocate space for layer indices
          LI = np.zeros(Z.shape, dtype=np.int)
                  
          #find the layer index for each sample point
          L = len(self.z)
          LI[Z < self.z[0]] = 0
          for l in range(L-1):
              idx = np.logical_and(Z > self.z[l], Z <= self.z[l+1])
              LI[idx] = l
              LI[Z > self.z[-1]] = L - 1
          
          #calculate the appropriate phase shift for the wave transmitted through the layer
          Ph_t = np.exp(1j * self.k * self.sz[LI] * (Z - self.z[LI]))
          
          #calculate the appropriate phase shift for the wave reflected off of the layer boundary
          LIp = LI + 1
          LIp[LIp >= L] = 0
          Ph_r = np.exp(-1j * self.k * self.sz[LI] * (Z - self.z[LIp]))
  #        print(Ph_r)
          Ph_r[LI >= L-1] = 0
          
          #calculate the phase shift based on the X and Y positions
          Ph_xy = np.exp(1j * self.k * (self.s[0] * X + self.s[1] * Y))
          
          #apply the phase shifts
          Et = self.Pt[:, LI] * Ph_t[:, :]
          Er = self.Pr[:, LI] * Ph_r[:, :]
          
          #add everything together coherently
          E = (Et + Er) * Ph_xy[:, :]
          
          #return the electric field
          return np.moveaxis(E, 0, -1)
  
    
  def example_psf():
      
      #specify the angle of accepted waves (NA if n = 1)
      sin_angle = 0.8
      
      #refractive index of the imaging medium
      n = 1.0
      
      #specify the size of the spectral domain (resolution of the front/back aperture)
      N = 100
      
      #create a new objective, specifying the NA (angle * refractive index) and resolution of the transform    
      O = objective(sin_angle, n, N)
      
      #specify the size of the spatial domain
      D = 10
      
      
      #specify the resolution of the spatial domain
      M = 100
      
      #free-space wavelength
      l0 = 1
      
      #calculate the free-space wavenumber
      k0 = 2 * np.pi * l0
      
      #specify the field incident at the aperture
      pap = np.array([1, 0, 0])                     #polarization
      sap = np.array([0, 0, 1])                  #incident angle of the plane wave (will be normalized)
      sap = sap / np.linalg.norm(sap)             #calculate the normalized direction vector for the plane wave
      
      k0ap = sap * k0                                 #calculate the k-vector of the plane wave incident on the aperture
      
      #create a plane wave
      pw = planewave(k0ap, pap)
      
      #generate the domain for the simulation (where the focus will be simulated)
      x = np.linspace(-D, D, M)
      z = np.linspace(-D, D, M)
      [RX, RZ] = np.meshgrid(x, z)
      RY = np.zeros(RX.shape)
      
      #create an image of the back aperture (just an incident plane wave)
      xap = np.linspace(-D, D, N)
      [XAP, YAP] = np.meshgrid(xap, xap)
      ZAP = np.zeros(XAP.shape)
      
      #evaluate the plane wave at the back aperture to produce a 2D image of the field
      EAP = pw.evaluate(XAP, YAP, ZAP)
      
      #calculate the field at the focus (coordinates are specified in RX, RY, and RZ)
      Efocus = O.focus(EAP, k0, RX, RY, RZ)
      
      #display an image of the calculated field
      plt.figure()
      plt.imshow(intensity(Efocus))
      plt.colorbar()
      
      return Efocus
      
  #This sample code produces a field similar to Figure 2 in Davis et al., 2010
  def example_layer():
      
      #set the material properties
      depths = [-50, -15, 15, 40]                         #specify the position (first boundary) of each layer (first boundary is where the field is defined)
      n = [1.0, 1.4+1j*0.05, 1.4, 1.0]                    #specify the refractive indices of each layer
  
      #create a layered sample
      layers = layersample(n, depths)
      
      #set the input light parameters
      d = np.array([0.5, 0])                             #direction of propagation of the plane wave
      
      #d = d / np.linalg.norm(d)                           #normalize this direction vector
      l0 = 5                                              #specify the wavelength in free-space         
      k0 = 2 * np.pi / l0                              #calculate the wavenumber in free-space
      E0 = [1, 1, 0]                                      #specify the E vector
      E0 = orthogonalize(E0, d)                           #make sure that both vectors are orthogonal
      #solve for the substrate field
      
      layers.solve1(d, k0, E0)
      #set the simulation domain
      N = 512
      M = 1024
      D = [-40, 80, 0, 60]
      x = np.linspace(D[2], D[3], N)
      z = np.linspace(D[0], D[1], M)
      [X, Z] = np.meshgrid(x, z)
      Y = np.zeros(X.shape)
      E = layers.evaluate(X, Y, Z)
      Er = np.real(E)
      I = intensity(E)
      plt.figure()
      plt.set_cmap("afmhot")
      matplotlib.rcParams.update({'font.size': 32})
      plt.subplot(1, 4, 1)
      plt.imshow(Er[..., 0], extent=(D[3], D[2], D[1], D[0]))
      plt.title("Ex")
      plt.subplot(1, 4, 2)
      plt.imshow(Er[..., 1], extent=(D[3], D[2], D[1], D[0]))
      plt.title("Ey")
      plt.subplot(1, 4, 3)
      plt.imshow(Er[..., 2], extent=(D[3], D[2], D[1], D[0]))
      plt.title("Ez")
      plt.subplot(1, 4, 4)
      plt.imshow(I, extent=(D[3], D[2], D[1], D[0]))
      plt.title("I")
      
  def example_psflayer():
      #specify the angle of accepted waves (NA if n = 1)
      sin_angle = 0.7
      
      #refractive index of the imaging medium
      n = 1.0
      
      #specify the size of the spectral domain (resolution of the front/back aperture)
      N = 31
      
      #create a new objective, specifying the NA (angle * refractive index) and resolution of the transform    
      O = objective(sin_angle, n, N)
      
      #specify the size of the spatial domain
      D = 5
      
      
      #specify the resolution of the spatial domain
      M = 200
      
      #free-space wavelength
      l0 = 1
      
      #calculate the free-space wavenumber
      k0 = 2 * np.pi /l0
      
      #specify the field incident at the aperture
      pap = np.array([1, 0, 0])                     #polarization
      sap = np.array([0, 0, 1])                  #incident angle of the plane wave (will be normalized)
      sap = sap / np.linalg.norm(sap)             #calculate the normalized direction vector for the plane wave
      
      k0ap = sap * k0                             #calculate the k-vector of the plane wave incident on the aperture
      
      #create a plane wave
      pw = planewave(k0ap, pap)
      
      #create an image of the back aperture (just an incident plane wave)
      xap = np.linspace(-D, D, N)
      [XAP, YAP] = np.meshgrid(xap, xap)
      ZAP = np.zeros(XAP.shape)
      
      #evaluate the plane wave at the back aperture to produce a 2D image of the field
      Eback = pw.evaluate(XAP, YAP, ZAP)
      Efront = O.back2front(Eback)
      
      #set the material properties
      depths = [0, -1, 0, 2]                         #specify the position (first boundary) of each layer (first boundary is where the field is defined)
      n = [1.0, 1.4+1j*0.05, 1.4, 1.0]                    #specify the refractive indices of each layer
  
      #create a layered sample
      L = layersample(n, depths)
      
      #generate the domain for the simulation (where the focus will be simulated)
      x = np.linspace(-D, D, M)
      z = np.linspace(-D, D, M)
      [RX, RZ] = np.meshgrid(x, z)
      RY = np.zeros(RX.shape)
      
      i = 0
      ang = np.linspace(-sin_angle, sin_angle, N)
      
      for yi in range(N):
          dy = ang[yi]
          for xi in range(N):
              dx = ang[xi]
              dxdy_sq = dx**2 + dy**2
              
              if dxdy_sq <= sin_angle**2:
                  
                  d = np.array([dx, dy])
                  e = Efront[xi, yi, :]
                  L.solve1(d, k0, e)
                  
                  if i == 0:
                      E = L.evaluate(RX, RY, RZ)
                      i = i + 1
                  else:
                      E = E + L.evaluate(RX, RY, RZ)
              
      plt.imshow(intensity(E))
      
  def example_spp():
      l = 0.647
      k0 = 2 * np.pi / l
      
      n_oil = 1.51
      n_mica = 1.56
      n_gold = 0.16049 + 1j * 3.5726
      n_water = 1.33
      
      #all units are in um
      d_oil = 100
      d_mica = 80
      d_gold = 0.05
      
      #specify the parameters for the layered sample
      zp = [0, d_oil, d_oil + d_mica, d_oil + d_mica + d_gold]
      n = [n_oil, n_mica, n_gold, n_water]
      
      #generate a layered sample
      L = layersample(n, zp)
      
      N = 10000
      min_theta = -90
      max_theta = 90
      DEG = np.linspace(min_theta, max_theta, N)
      
      I = np.zeros(N)
      
      for i in range(N):
          theta = DEG[i] * np.pi / 180
          
          #create a plane wave
          x = np.sin(theta)
          z = np.cos(theta)
          d = [x, 0]
          
          #calculate the E vector by finding a value orthogonal to d
          E0 = [-z, 0, x]
          
          #solve for the layered sample
          L.solve1(d, k0, E0)    
          
          Er = L.Pr[:, 0]
          I[i] = intensity(Er)
      plt.plot(I)