Blame view

stim/cuda/ivote/update_dir_global.cuh 5.35 KB
11cd127f   Laila Saadatifard   Leila's ivote pro...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
  #ifndef STIM_CUDA_UPDATE_DIR_GLOBALD_H
  #define STIM_CUDA_UPDATE_DIR_GLOBAL_H
  
  # include <iostream>
  # include <cuda.h>
  #include <stim/cuda/cudatools.h>
  #include <stim/cuda/sharedmem.cuh>
  #include "cpyToshare.cuh" 
  
  #define RMAX_TEST	8
  
  namespace stim{
  	namespace cuda{
  	
  		// this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area.
  		template<typename T>
  		__global__ void cuda_update_dir(T* gpuDir, T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax,  int x,  int y){
  
  			
  			//calculate the start point for this block
  			int bxi = blockIdx.x * blockDim.x;
  			
  			// calculate the 2D coordinates for this current thread.
  			int xi = bxi + threadIdx.x;
  			if(xi >= x) return;													//if the index is outside of the image, terminate the kernel
  			int yi = blockIdx.y * blockDim.y + threadIdx.y;			
  			int i = yi * x + xi;												// convert 2D coordinates to 1D
  			
  			float theta = gpuGrad[2*i];											// calculate the voting direction based on the grtadient direction - global memory fetch			
  			gpuDir[i] = 0;														//initialize the vote direction to zero			
  			float max = 0;														// define a local variable to maximum value of the vote image in the voting area for this voter
  			int id_x = 0;														// define two local variables for the x and y position of the maximum
  			int id_y = 0;
  			
  			int x_table = 2*rmax +1;											// compute the size of window which will be checked for finding the voting area for this voter
  			int rmax_sq = rmax * rmax;
  			int tx_rmax = threadIdx.x + rmax;
  			float atan_angle;
  			float vote_c;
  			for(int yr = -RMAX_TEST; yr <= RMAX_TEST; yr++){
  				if (yi+yr >= 0 && yi + yr < y){
  					for(int xr = -RMAX_TEST; xr <= RMAX_TEST; xr++){
  
  						unsigned int ind_t = (RMAX_TEST - yr) * x_table + RMAX_TEST - xr;
  
  						// calculate the angle between the voter and the current pixel in x and y directions
  						atan_angle = gpuTable[ind_t];
  						
  						// find the vote value for the current counter
  						vote_c = gpuVote[(yi+yr)*x + (xi+xr)];
  						
  						// check if the current pixel is located in the voting area of this voter.
  						if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) <phi)){
  
  						// compare the vote value of this pixel with the max value to find the maxima and its index.
  							if  (vote_c>max) {
  
  								max = vote_c;
  								id_x =  xr;
  								id_y =  yr;
  							}
  						}
  					}
  				}
  			}
  							
  			unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x);
  			float new_angle = gpuTable[ind_m];
  
  			if(xi < x && yi < y)
  				gpuDir[i] = new_angle;
  		}										//end kernel
  
  		// this kernel updates the gradient direction by the calculated voting direction.
  		template<typename T>
  		__global__ void cuda_update_grad(T* gpuGrad, T* gpuDir, int x, int y){
  
  			// calculate the 2D coordinates for this current thread.
  			int xi = blockIdx.x * blockDim.x + threadIdx.x;
  			int yi = blockIdx.y * blockDim.y + threadIdx.y;
  		
  			// convert 2D coordinates to 1D
  			int i = yi * x + xi;
  			
  			//update the gradient image with the vote direction
  			gpuGrad[2*i] = gpuDir[i];
  		}
  		
  		template<typename T>
  		void gpu_update_dir(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){
  
  			//calculate the number of bytes in the array
  			unsigned int bytes = x * y * sizeof(T);
  
  			unsigned int max_threads = stim::maxThreadsPerBlock();
  			dim3 threads(max_threads, 1);
  			dim3 blocks(x/threads.x + (x %threads.x == 0 ? 0:1) , y);
  			
  			// allocate space on the GPU for the updated vote direction
  			T* gpuDir;
  			cudaMalloc(&gpuDir, bytes);	
  
  			//call the kernel to calculate the new voting direction
  			cuda_update_dir <<< blocks, threads>>>(gpuDir, gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
  
  			//call the kernel to update the gradient direction
  			cuda_update_grad <<< blocks, threads >>>(gpuGrad, gpuDir, x , y);
  			
  			//free allocated memory
  			cudaFree(gpuDir);
  
  		}
  		
  		template<typename T>
  		void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){
  
  			//calculate the number of bytes in the array
  			unsigned int bytes = x * y * sizeof(T);
  
  			//calculate the number of bytes in the atan2 table
  			unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T);
  
  			//allocate space on the GPU for the Vote Image
  			T* gpuVote;
  			cudaMalloc(&gpuVote, bytes);
  
  			//copy the input vote image to the GPU
  			HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice));	
  
  			//allocate space on the GPU for the input Gradient image
  			T* gpuGrad;
  			HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2));
  
  			//copy the Gradient data to the GPU
  			HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice));
  
  			//allocate space on the GPU for the atan2 table
  			T* gpuTable;
  			HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table));
  
  			//copy the atan2 values to the GPU
  			HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice));
  						
  			//call the GPU version of the update direction function
  			gpu_update_dir<T>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
  							
  			//copy the new gradient image back to the CPU
  			cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ;
  
  			//free allocated memory
  			cudaFree(gpuTable);
  			cudaFree(gpuVote);
  			cudaFree(gpuGrad);
  		}
  		
  	}
  }
  
  #endif