Blame view

stim/cuda/ivote/vote_shared_32-32.cuh 4.88 KB
11cd127f   Laila Saadatifard   Leila's ivote pro...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  #ifndef STIM_CUDA_VOTE_SHARED_H
  #define STIM_CUDA_VOTE_SHARED
  # include <iostream>
  # include <cuda.h>
  #include <stim/cuda/cudatools.h>
  #include <stim/cuda/sharedmem.cuh>
  #include "cpyToshare.cuh"
  
  namespace stim{
  	namespace cuda{
  
  		// this kernel calculates the vote value by adding up the gradient magnitudes of every voter that this pixel is located in their voting area
  		template<typename T>
  		__global__ void cuda_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax, int x, int y){
  
  			//generate a pointer to shared memory (size will be specified as a kernel parameter)
  			extern __shared__ float s_grad[];
  
  			//calculate the start point for this block
  			int bxi = blockIdx.x * blockDim.x;
  			int byi = blockIdx.y * blockDim.y;
  			// calculate the 2D coordinates for this current thread.
  			int xi = bxi + threadIdx.x;
  			int yi = byi + threadIdx.y;
  			// convert 2D coordinates to 1D
  			int i = yi * x + xi;
  						
  			// define a local variable to sum the votes from the voters
  			float sum = 0;
  			
  			//calculate the width of the shared memory block
  			int xwidth = 2 * rmax + blockDim.x;
  			int ywidth = 2 * rmax + blockDim.y;
  			// compute the size of window which will be checked for finding the proper voters for this pixel
  			int x_table = 2*rmax +1;
  			int rmax_sq = rmax * rmax;
  			int tx_rmax = threadIdx.x + rmax;
  			int bxs = bxi - rmax;			
  			int bys = byi - rmax;	
  			//compute the coordinations of this pixel in the 2D-shared memory.
  			int sx_rx = threadIdx.x + rmax;
  			int sy_ry = threadIdx.y + rmax;
  			//copy the portion of the image necessary for this block to shared memory
  			__syncthreads();
  			cpyG2S2D2ch<float>(s_grad, gpuGrad, bxs, bys, 2*xwidth, ywidth, threadIdx, blockDim, x, y);
  			__syncthreads();
  			
  			for(int yr = -rmax; yr <= rmax; yr++){
  				int yi_v = (yi + yr) ;
  				//compute the position of the current voter in the shared memory along the y axis.
  				unsigned int sIdx_y1d = (sy_ry + yr)* xwidth;
  				//if (yi+yr<y && yi+yr>=0){
  					if(xi < x && yi < y){
  
  						for(int xr = -rmax; xr <= rmax; xr++){
  					
  								//compute the position of the current voter in the 2D-shared memory along the x axis.
  								unsigned int sIdx_x = (sx_rx + xr);
  								//find the 1D index of this voter in the 2D-shared memory.
  								unsigned int s_Idx = (sIdx_y1d  + sIdx_x);
  								unsigned int s_Idx2 = s_Idx * 2;
  								
  								//find the location of this voter in the atan2 table
  								int id_t = (yr + rmax) * x_table + xr + rmax;
  
  								// calculate the angle between the pixel and the current voter in x and y directions
  								float atan_angle = gpuTable[id_t];
  												
  								// calculate the voting direction based on the grtadient direction
  								//int idx_share = xr + tx_rmax ;
  								float theta = s_grad[s_Idx2];
  								float mag = s_grad[s_Idx2 + 1];
  							
  
  								// check if the current voter is located in the voting area of this pixel.
  								if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) <phi)){
  									sum += mag;		
  
  								}
  						}
  				
  					}
  				//}
  			}
  			if(xi < x && yi < y)
  				gpuVote[i] = sum;
  			
  		}
  
  		template<typename T>
  		void gpu_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){
  
  							
  			unsigned int max_threads = stim::maxThreadsPerBlock();
  			dim3 threads(sqrt(max_threads), sqrt(max_threads));
  			dim3 blocks(x/threads.x + 1 , y/threads.y+1);
  			
  					
  			// specify  share memory
  			unsigned int share_bytes = (2*rmax + threads.x)*(2*rmax + threads.y)*2*sizeof(T);
  			
  			//call the kernel to do the voting
  			cuda_vote <<< blocks, threads,share_bytes >>>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
  
  		}
  
  
  		template<typename T>
  		void cpu_vote(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){
  
  			//calculate the number of bytes in the array
  			unsigned int bytes = x * y * sizeof(T);
  
  			//calculate the number of bytes in the atan2 table
  			unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T);
  
  			//allocate space on the GPU for the Vote Image
  			T* gpuVote;
  			cudaMalloc(&gpuVote, bytes);		
  
  			//allocate space on the GPU for the input Gradient image
  			T* gpuGrad;
  			HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2));
  
  			//copy the Gradient Magnitude data to the GPU
  			HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice));
  
  			//allocate space on the GPU for the atan2 table
  			T* gpuTable;
  			HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table));
  
  			//copy the atan2 values to the GPU
  			HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice));
  						
  			//call the GPU version of the vote calculation function
  			gpu_vote<T>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
  							
  			//copy the Vote Data back to the CPU
  			cudaMemcpy(cpuVote, gpuVote, bytes, cudaMemcpyDeviceToHost) ;
  
  			//free allocated memory
  			cudaFree(gpuTable);
  			cudaFree(gpuVote);
  			cudaFree(gpuGrad);
  		}
  		
  	}
  }
  
  #endif