Blame view

stim/math/circle_dep.h 4.08 KB
e21d1051   David Mayerich   cylinder can buil...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  #ifndef STIM_CIRCLE_H
  #define STIM_CIRCLE_H
  
  #include <stim/cuda/cudatools/callable.h>
  #include <stim/math/plane.h>
  #include <stim/math/vector.h>
  #include <stim/math/triangle.h>
  #include <stim/math/constants.h>
  #include <assert.h>
  #include <algorithm>
  #include <iostream>
  
  namespace stim{
  
  template <typename T>
  class circle : plane<T>
  {
  
  private:
  	
  	stim::vec3<T> Y;
  
  	CUDA_CALLABLE void
  	init()
  	{
  		Y = U.cross(N).norm();
  	}
  
  public:
  	using stim::plane<T>::n;
  	using stim::plane<T>::P;
  	using stim::plane<T>::N;
  	using stim::plane<T>::U;
  	using stim::plane<T>::rotate;
  	using stim::plane<T>::setU;
  
  	///base constructor
  	///@param th value of the angle of the starting point from 0 to 360.
  	CUDA_CALLABLE
  	circle() : plane<T>()
  	{
  		init();
  	}
  
  	///create a rectangle given a size and position in Z space.
  	///@param size: size of the rectangle in ND space.
  	///@param z_pos z coordinate of the rectangle.
  	CUDA_CALLABLE
  	circle(T size, T z_pos = (T)0) : plane<T>()
  	{
  		center(stim::vec3<T>(0,0,z_pos));
  		scale(size);
  		init();
  	}
  
  	///create a rectangle from a center point, normal
  	///@param c: x,y,z location of the center.
  	///@param n: x,y,z direction of the normal.	
  	CUDA_CALLABLE
  	circle(vec3<T> c, vec3<T> n = vec3<T>(0,0,1)) : plane<T>()
  	{
  		center(c);
  		normal(n);
  		init();
  	}
  
  	/*///create a rectangle from a center point, normal, and size
  	///@param c: x,y,z location of the center.
  	///@param s: size of the rectangle.
  	///@param n: x,y,z direction of the normal.
  	CUDA_CALLABLE 
  	circle(vec3<T> c, T s, vec3<T> n = vec3<T>(0,0,1)) : plane<T>()
  	{
  		init();
  		center(c);
  		rotate(n, U, Y);
  		scale(s);
  	}
  	*/
  
  	///create a rectangle from a center point, normal, and size
  	///@param c: x,y,z location of the center.
  	///@param s: size of the rectangle.
  	///@param n: x,y,z direction of the normal.
  	///@param u: x,y,z direction for the zero vector (from where the rotation starts)
  	CUDA_CALLABLE
  	circle(vec3<T> c, T s, vec3<T> n = vec3<T>(0,0,1), vec3<T> u = vec3<T>(1, 0, 0)) : plane<T>()
  	{
  		init();
  		setU(u);
  //		U = u;
  		center(c);
  		normal(n);
  		scale(s);
  	}
  
  	///scales the circle by a certain factor
  	///@param factor: the factor by which the dimensions of the shape are scaled.
  	CUDA_CALLABLE
  	void scale(T factor)
  	{
  		U *= factor;
  		Y *= factor;
  	}
  
  	///sets the normal for the cirlce
  	///@param n: x,y,z direction of the normal.
  	CUDA_CALLABLE void
  	normal(vec3<T> n)
  	{
  		rotate(n, Y);
  	}
  
  	///sets the center of the circle.
  	///@param n: x,y,z location of the center.
  	CUDA_CALLABLE void
  	center(vec3<T> p){
  		this->P = p;
  	}
  
  	///boolean comparison
  	bool
  	operator==(const circle<T> & rhs)
  	{
  		if(P == rhs.P && U == rhs.U && Y == rhs.Y)
  			return true;
  		else
  			return false;
  	}
  
  	///get the world space value given the planar coordinates a, b in [0, 1]
  	CUDA_CALLABLE stim::vec3<T> p(T a, T b)
  	{
  		stim::vec3<T> result;
  
  		vec3<T> A = this->P - this->U * (T)0.5 - Y * (T)0.5;
  		result = A + this->U * a + Y * b;
  		return result;
  	}
  
  	///parenthesis operator returns the world space given rectangular coordinates a and b in [0 1]
  	CUDA_CALLABLE stim::vec3<T> operator()(T a, T b)
  	{
  		return p(a,b);
  	}
  
  	///returns a vector with the points on the initialized circle.
  	///connecting the points results in a circle.
  	///@param n: integer for the number of points representing the circle.
  	std::vector<stim::vec3<T> >
  	getPoints(int n)
  	{
  		std::vector<stim::vec3<T> > result;
  		stim::vec3<T> point;
  		T x,y;
  		float step = 360.0/(float) n;
  		for(float j = 0; j <= 360.0; j += step)
  		{
  			y = 0.5*cos(j*stim::TAU/360.0)+0.5;
  			x = 0.5*sin(j*stim::TAU/360.0)+0.5;
  			result.push_back(p(x,y));
  		}
  		return result;
  	}	
  	
  	///returns a vector with the points on the initialized circle.
  	///connecting the points results in a circle.
  	///@param n: integer for the number of points representing the circle.
  	CUDA_CALLABLE stim::vec3<T>
  	p(T theta)
  	{
  		T x,y;
  		y = 0.5*cos(theta*STIM_TAU/360.0)+0.5;
  		x = 0.5*sin(theta*STIM_TAU/360.0)+0.5;
  		return p(x,y);
  	}
  
  	std::string str() const
  	{
  		std::stringstream ss;
  		ss << "(P=" << P.str() << ", N=" << N.str() << ", U=" << U.str() << ", Y=" << Y.str();
  		return ss.str();
  	}
  
  };
  }
  #endif