Blame view

legacy/rtsNetwork.h 47.7 KB
f1402849   dmayerich   renewed commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
  #include "objJedi.h"

  #include <list>

  #include <vector>

  #include <limits.h>

  #include <fstream>

  

  //itk includes

  #include "../../VesselAnalysis/VesselAnalysis/VOL_to_ITK.h"

  #include "itkDanielssonDistanceMapImageFilter.h"

  #include "itkBinaryThresholdImageFilter.h"

  #include "itkConstNeighborhoodIterator.h"

  #include "itkExpandImageFilter.h"

  #include "itkDiscreteGaussianImageFilter.h"

  #include "itkCastImageFilter.h"

  

  

  /* This code uses the octree library designed by Simon Perreault (http://nomis80.org/code/octree.html)*/

  #include "octree/octree.h"

  

  #define OCTREE_SIZE		1024

  #define BUFFER_ZONE		0

  

  

  using namespace std;

  

  

  

  //definitions for simple structures

  typedef vector<point3D<float>> FilamentType;

  typedef point3D<float> CoordType;

  typedef vector<FilamentType> NetworkType;

  

  struct EdgeType

  {

  	unsigned int v0;

  	unsigned int v1;

  	float avg_radius;

  	float min_radius;

  	float max_radius;

  	float volume;

  	float length;

  	bool valid;

  };

  

  struct NodeType

  {

  	CoordType p;

  	vector<unsigned int> edges;

  	bool valid;

  };

  

  struct ConnectType				//this structures stores the info necessary to combine two fibers

  {			

  	unsigned int edge0;

  	unsigned int edge1;

  	unsigned int node0;

  	unsigned int node1;

  	list<FilamentType>::iterator fiber0;

  	list<FilamentType>::iterator fiber1;

  };

  

  struct ConnectableType

  {

  	FilamentType fiber;

  	bool front;

  	bool back;

  	unsigned int id;

  };

  

  struct AttributeType

  {

  	float TotalFiberLength;

  	int NumFibers;

  	int NumPoints;

  	float TotalVolume;

  	int NumDisconnectedFibers;

  	int NumBoundaryFibers;

  	int NumBifurcations;

  };

  

  struct BranchType

  {

  	float angle;

  	unsigned int branch_id;

  };

  

  

  class rtsNetwork

  {

  private:

  	int id;							//used for swc output

  	ofstream outfile;				//also for swc

  	NetworkType network;			//list of filaments that make up the network

  	vector<NodeType> NodeList;		//vector of endpoints

  	vector<EdgeType> EdgeList;		//vector of vessels as edges

  	vector3D<unsigned int> boundary;

  	vector3D<float> position;

  	

  

  	float calcFiberLength(unsigned int f);

  	float calcFiberBend(unsigned int f);

  	float calcTotalLength();

  	bool isBoundaryNode(unsigned int node);

  	vector3D<float> calcTrajectory(FilamentType f, bool end);

  	bool compareTrajectories(CoordType p0, vector3D<float> v0, CoordType p1, vector3D<float> v1, float distance, float cosine_angle);

  	void calcGraph();

  	vector<unsigned int> getConnections(unsigned int node);

  	CoordType toTissue(CoordType grid_coord);

  	FilamentType combineFibers(FilamentType f0, bool endpoint0, FilamentType f1, bool endpoint1);

  	bool isConnectable(ConnectableType c0, ConnectableType c1, bool& c0_end, bool& c1_end, float distance, float cosine_angle);

  	void traverseGraph(int node, int parent_id);

  	void outputFiberToSWC(int edge, int node_from, int parent_id);

  

  	vector<BranchType> getFiberAngles(unsigned int fiber);

  	void reset();

  	

  public:

  	//attribute variables

  	AttributeType Attributes;

  

  	//control variables

  	point3D<float> voxel_size;

  

  	//cleaning

  	int cleanDegenerateEdges(float length);

  	int cleanRedundantEdges();

  	int cleanBarbs(float length);

  

  	//methods

  	rtsOBJ LoadOBJModel(const char* filename);

  	void AddOBJModel(const char* filename);

  	void SaveSWCModel(const char *filename, float root_x, float root_y);

  	void SaveSWCModel(const char *filename);

  	void Clean(float degenerate_length, float barb_length);

  	void CalculateAttributes();

  	rtsOBJ Repair(float max_distance, float cos_angle);

  	rtsOBJ CreateModel();

  	void printFiberStats(unsigned int fiber);

  	void ReMesh(float resample_length);

  	void SaveAngles(const char* filename);

  	void SaveBends(const char* filename);

  	void SaveLengths(const char* filename);

  	void SaveMathematicaGraph(const char* filename);

  	void SaveMathematicaNodeDistances(const char* filename);

  	void SetVoxelSize(float dx, float dy, float dz){voxel_size.x = dx; voxel_size.y = dy; voxel_size.z = dz;}

  	void RemoveTerminalComponents();

  	void RemoveBoundaryComponents();

  	void GetRadiusFromVolume(const char* filename, unsigned int threshold, unsigned int range);

  	void GetRadiusFromDistanceMap(const char *filename, int range);

  	point3D<float> GetFiberRadius(unsigned int fiber);

  	void ScaleNetwork(float x, float y, float z);

  	void SetOutputPosition(float x, float y, float z);

  	

  

  };

  //private

  void rtsNetwork::reset()

  {

  	vector<EdgeType>::iterator e;

  	for(e=EdgeList.begin(); e!=EdgeList.end(); e++)

  		(*e).valid = true;

  

  	vector<NodeType>::iterator n;

  	for(n=NodeList.begin(); n!=NodeList.end(); n++)

  		(*n).valid = true;

  }

  

  float rtsNetwork::calcFiberBend(unsigned int f)

  {

  	/*calculates the bend of a fiber.*/

  

  	//find the line connecting the two endpoints

  	point3D<float> p1 = toTissue(NodeList[EdgeList[f].v0].p);

  	point3D<float> p2 = toTissue(NodeList[EdgeList[f].v1].p);

  

  	//find the largest distance between the filament and the line between endpoints

  	FilamentType::iterator i;

  	float max_distance = 0;

  	for(i = network[f].begin(); i!= network[f].end(); i++)

  	{

  		point3D<float> p0 = toTissue((*i));

  

  		//find the distance between the current point and the line made by the endpoints

  		float d = ((p0 - p1).X(p0-p2).Length())/(p2-p1).Length();

  		if(d > max_distance)

  			max_distance = d;

  	}

  	float fiber_length = calcFiberLength(f);

  	if(max_distance/fiber_length > 0.5)

  	{

  		cout<<"Something's wrong."<<endl;

  		cout<<max_distance<<"---"<<fiber_length<<endl;

  	}

  

  	return max_distance/calcFiberLength(f);	

  

  }

  int rtsNetwork::cleanRedundantEdges()

  {

  	

  	//redundant edges are edges with nodes of valence-2

  

  	int combined = 0;

  

  	//combine all valence-2 fibers

  	NetworkType newNetwork;

  	unsigned int numNodes = NodeList.size();

  	unsigned int n;

  	unsigned int e0, e1;

  	for(n=0; n<numNodes; n++)

  	{

  		//if the node is valence-2

  		if(getConnections(n).size() == 2)

  		{

  			//get both edges

  			e0 = NodeList[n].edges[0];

  			e1 = NodeList[n].edges[1];

  

  			//if both edges are valid

  			if(EdgeList[e0].valid && EdgeList[e1].valid)

  			{

  				//combine them

  				if(EdgeList[e0].v0 == n)

  				{

  					if(EdgeList[e1].v0 == n)

  						newNetwork.push_back(combineFibers(network[e0], 0, network[e1], 0));

  					else

  						newNetwork.push_back(combineFibers(network[e0], 0, network[e1], 1));

  				}

  				else if(EdgeList[e0].v1 == n)

  				{

  					if(EdgeList[e1].v0 == n)

  						newNetwork.push_back(combineFibers(network[e0], 1, network[e1], 0));

  					else

  						newNetwork.push_back(combineFibers(network[e0], 1, network[e1], 1));

  				}

  				EdgeList[e0].valid = false;

  				EdgeList[e1].valid = false;

  				combined++;

  			}

  

  		}

  	}

  

  	unsigned int numEdges = network.size();

  	unsigned int e;

  	for(e=0; e<numEdges; e++)

  	{

  		if(EdgeList[e].valid)

  			newNetwork.push_back(network[e]);

  	}

  

  	network = newNetwork;

  	calcGraph();

  	return combined;

  

  

  }

  int rtsNetwork::cleanBarbs(float length)

  {

  	int removed = EdgeList.size();

  	//removes fibers that are shorter than the specified length

  	NetworkType newNetwork;

  

  	unsigned int numEdges, e;

  	numEdges = EdgeList.size();

  	unsigned int numVertices, v;

  	float e_length;

  

  	for(e=0; e<numEdges; e++)

  	{

  		//if the fiber is an end fiber (one vertex has valence 1)

  		if(getConnections(EdgeList[e].v0).size() ==1 || getConnections(EdgeList[e].v1).size() ==1)

  		{

  			e_length = calcFiberLength(e);

  			//if the fiber is larger than the given length

  			if(e_length > length)

  			{

  				newNetwork.push_back(network[e]);

  				removed--;

  			}

  			

  		}

  		//if the fiber is not an end fiber

  		else

  		{

  			newNetwork.push_back(network[e]);

  			removed--;

  		}

  

  	}

  

  	network.clear();

  	network = newNetwork;

  	calcGraph();

  

  	cout<<"Barbs removed: "<<removed<<endl;

  

  	return removed;

  

  }

  

  int rtsNetwork::cleanDegenerateEdges(float length)

  {

  	/*This function cleans unnecessary edges with length less than <length>*/

  

  	//form lists of degenerate and non-degenerate edges

  	int removed = 0;

  

  	list<ConnectableType> degenerate;

  	list<ConnectableType> complete;

  

  	//iterate through each fiber and put it in the appropriate list

  	int numFibers = network.size();

  	int f;

  	ConnectableType c;

  	for(f=0; f<numFibers; f++)

  	{

  		c.fiber = network[f];

  		c.id = f;

  		if(calcFiberLength(f) <= length)

  			degenerate.push_back(c);

  		else

  			complete.push_back(c);

  	}

  

  	

  	vector<unsigned int> connected_edges;

  	vector<unsigned int> shared_vertices;

  	int numEdges, numVerts, e, e0, e1, v;

  	int connectedEdge;

  	//for each degenerate edge

  	list<ConnectableType>::iterator i;

  	for(i=degenerate.begin(); i!=degenerate.end(); i++)

  	{

  /*DEGENERATE CASE 1

  In this case, we remove edges that are parts of very small cycles (ex short edges that

  bridge between a bifurcation, forming a small triangle).

  */

  		//get all of the edges connected to that edge

  		connected_edges.clear();

  		//add edges connected to v0

  		v = EdgeList[(*i).id].v0;

  		numEdges = NodeList[v].edges.size();

  		for(e=0; e<numEdges; e++)

  		{

  			connectedEdge = NodeList[v].edges[e];

  			if(connectedEdge != (*i).id && EdgeList[connectedEdge].valid)

  				connected_edges.push_back(connectedEdge);

  		}

  		//add edges connected to v1

  		v = EdgeList[(*i).id].v1;

  		numEdges = NodeList[v].edges.size();

  		for(e=0; e<numEdges; e++)

  		{

  			connectedEdge = NodeList[v].edges[e];

  			if(connectedEdge != (*i).id && EdgeList[connectedEdge].valid)

  				connected_edges.push_back(connectedEdge);

  		}

  

  		//find all of the shared vertices

  		shared_vertices.clear();

  		numEdges = connected_edges.size();

  		for(e0=0; e0<numEdges; e0++)

  		{

  			for(e1 = e0; e1<numEdges; e1++)

  			{

  				if(e0 != e1)

  				{

  					if(EdgeList[connected_edges[e0]].v0 == EdgeList[connected_edges[e1]].v0 ||

  					   EdgeList[connected_edges[e0]].v0 == EdgeList[connected_edges[e1]].v1)

  						shared_vertices.push_back(EdgeList[connected_edges[e0]].v0);

  					else if(EdgeList[connected_edges[e0]].v1 == EdgeList[connected_edges[e1]].v0 ||

  							EdgeList[connected_edges[e0]].v1 == EdgeList[connected_edges[e1]].v1)

  						shared_vertices.push_back(EdgeList[connected_edges[e0]].v1);

  				}

  			}

  		}

  

  		//are any of these vertices not part of the original edge?

  		numVerts = shared_vertices.size();

  		bool delete_fiber = false;

  		for(v = 0; v<numVerts; v++)

  		{

  			if(shared_vertices[v] != EdgeList[(*i).id].v0 &&

  			   shared_vertices[v] != EdgeList[(*i).id].v1)

  			{

  				if(getConnections(EdgeList[(*i).id].v0).size() ==1 ||

  				   getConnections(EdgeList[(*i).id].v0).size() ==1)

  				   cout<<"error  "<<(*i).id<<endl;

  				delete_fiber = true;

  				removed++;

  				EdgeList[(*i).id].valid = false;

  			}

  		}

  /*DEGENERATE CASE 2

  In this case, we remove edges that are equal to each other (ex both ends are connected to the

  same outside fiber).

  */

  		

  		//find the number of branches in v0

  		int v0 = EdgeList[(*i).id].v0;

  		int v1 = EdgeList[(*i).id].v1;

  

  		int numV0 = NodeList[v0].edges.size();

  		int numV1 = NodeList[v1].edges.size();

  

  		//go through each fiber connected to both nodes

  		for(int vi=0; vi<numV0; vi++)

  			for(int vj=0; vj<numV1; vj++)

  			{

  				//if there is a match and it isn't the current fiber, delete it

  				if(NodeList[v0].edges[vi] == NodeList[v1].edges[vj])

  					if(NodeList[v0].edges[vi] != (*i).id && EdgeList[NodeList[v0].edges[vi]].valid)

  					{

  						delete_fiber = true;

  						removed++;

  						EdgeList[(*i).id].valid = false;

  					}

  			}

  

  /*DEGENERATE CASE 3

  Delete fibers that are less than length and have degree-4 connections

  */

  		if(calcFiberLength((*i).id) < length && 

  			NodeList[EdgeList[(*i).id].v1].edges.size() >3 &&

  			NodeList[EdgeList[(*i).id].v0].edges.size() >3)

  		{

  			delete_fiber = true;

  			removed++;

  			EdgeList[(*i).id].valid = false;

  		}

  

  

  

  

  		if(!delete_fiber)

  			complete.push_back((*i));

  

  	}

  

  	//re-create the network from <complete>

  	NetworkType newNetwork;

  	for(i = complete.begin(); i!=complete.end(); i++)

  		newNetwork.push_back((*i).fiber);

  

  	network = newNetwork;

  	calcGraph();

  

  	return removed;

  

  

  

  

  }

  bool rtsNetwork::isBoundaryNode(unsigned int node)

  {

  	CoordType p;

  

  	p = NodeList[node].p;

  	if(NodeList[node].edges.size() > 1)

  		return false;

  	if(p.x > BUFFER_ZONE && p.y > BUFFER_ZONE && p.z > BUFFER_ZONE &&

  	   p.x < boundary.x - BUFFER_ZONE && p.y < boundary.y - BUFFER_ZONE && p.z < boundary.z - BUFFER_ZONE)

  		return false;

  	else

  		return true;

  }

  

  

  bool rtsNetwork::isConnectable(ConnectableType c0, ConnectableType c1, bool& c0_end, bool& c1_end, float distance, float cosine_angle)

  {

  	//tests to see if two ConnectableType fibers can be connected.  If so, the function

  	//returns true as well as the optimal connected endpoints as <c0_end> and <c1_end>.

  	//For these parameters, 0 = the first point on the fiber and 1 = the last point.

  

  	if(c0.id == 1381 && c1.id == 1407)

  		cout<<"here"<<endl;

  

  

  	vector3D<float> t0;

  	vector3D<float> t1;

  	if(c0.front == 0)

  	{

  		t0 = calcTrajectory(c0.fiber, 0);

  		if(c1.front == 0)

  		{

  			t1 = calcTrajectory(c1.fiber, 0);

  			if(compareTrajectories(c0.fiber.front(), t0, c1.fiber.front(), t1, distance, cosine_angle))

  			{

  				c0_end = 0;

  				c1_end = 0;

  				return true;

  			}

  		}

  		if(c1.back == 0)

  		{

  			t1 = calcTrajectory(c1.fiber, 1);

  			if(compareTrajectories(c0.fiber.front(), t0, c1.fiber.back(), t1, distance, cosine_angle))

  			{

  				c0_end = 0;

  				c1_end = 1;

  				return true;

  			}

  		}

  	}

  	if(c0.back == 0)

  	{

  		t0 = calcTrajectory(c0.fiber, 1);

  		if(c1.front == 0)

  		{

  			t1 = calcTrajectory(c1.fiber, 0);

  			if(compareTrajectories(c0.fiber.back(), t0, c1.fiber.front(), t1, distance, cosine_angle))

  			{

  				c0_end = 1;

  				c1_end = 0;

  				return true;

  			}

  		}

  		if(c1.back == 0)

  		{

  			t1 = calcTrajectory(c1.fiber, 1);

  			if(compareTrajectories(c0.fiber.back(), t0, c1.fiber.back(), t1, distance, cosine_angle))

  			{

  				c0_end = 1;

  				c1_end = 1;

  				return true;

  			}

  		}

  	}

  

  

  	return false;

  

  }

  FilamentType rtsNetwork::combineFibers(FilamentType f0, bool endpoint0, FilamentType f1, bool endpoint1)

  {

  

  	//create the new filament

  	FilamentType newFilament;

  	//insert the first filament

  	//if the valence-1 vertex is at the beginning

  	if(endpoint0 == 0)

  	{

  		//add the edge backwards

  		for(int v=f0.size() - 1; v>=0; v--)

  			newFilament.push_back(f0[v]);

  	}

  	else

  	{

  		//otherwise we can just copy the filament over

  		newFilament = f0;

  	}

  

  	//insert the second filament

  	//if the valence-1 vertex is at the beginning

  	if(endpoint1 == 0)

  	{

  		//add the edge in forwards

  		for(int v=0; v<f1.size(); v++)

  			newFilament.push_back(f1[v]);

  	}

  	else

  	{

  		for(int v=f1.size() - 1; v>=0; v--)

  			newFilament.push_back(f1[v]);

  	}

  

  	return newFilament;

  }

  vector3D<float> rtsNetwork::calcTrajectory(FilamentType f, bool end)

  {

  	//calculates the trajectory of a fiber at the given endpoint (0 = first, 1 = last)

  

  	CoordType pEndpoint;

  	CoordType pPrevpoint;

  	if(end == 0)

  	{

  		pEndpoint = f.front();

  		pPrevpoint = f[1];

  		//pPrevpoint = f[ceil(f.size()/4.0)];

  	}

  	else

  	{

  		pEndpoint = f.back();

  		pPrevpoint = f[f.size() - 2];

  		//pPrevpoint = f[floor(f.size()*3.0/4.0)];

  	}

  

  	//pPrevpoint = f[f.size()/2];

  	

  

  	vector3D<float> result = toTissue(pEndpoint) - toTissue(pPrevpoint);

  	result.Normalize();

  	return result;

  }

  bool rtsNetwork::compareTrajectories(CoordType p0, vector3D<float> v0, CoordType p1, vector3D<float> v1, float distance, float cosine_angle)

  {

  	//determines of two points/trajectory pairs are compatible for connection

  	vector3D<float> difference = p1 - p0;

  	//test distance

  	if(difference.Length() <= distance)

  	{

  		difference.Normalize();

  		if(v0*difference >= cosine_angle && v1*difference <= -cosine_angle)

  			return true;

  	}

  	return false;

  }

  vector<unsigned int> rtsNetwork::getConnections(unsigned int node)

  {

  	return NodeList[node].edges;

  

  }

  point3D<float> rtsNetwork::toTissue(CoordType grid_coord)

  {

  	//converts a coordinate from the original voxel grid coordinates to tissue-space coordinates

  	return CoordType(grid_coord.x * voxel_size.x,

  					 grid_coord.y * voxel_size.y,

  				     grid_coord.z * voxel_size.z);

  					 

  	//return grid_coord;

  }

  

  float rtsNetwork::calcFiberLength(unsigned int f)

  {

  	//This function calculates the total length of the given fiber

  

  	float result = 0.0;

  

  	//find the length of each fiber

  	int vertNum, v;

  

  	vertNum = network[f].size();

  	for(v=1; v<vertNum; v++)

  	{

  		result += (toTissue(network[f][v-1]) - toTissue(network[f][v])).Length();

  	}

  

  	return result;

  

  }

  

  float rtsNetwork::calcTotalLength()

  {

  	float result = 0.0;

  

  	//find the length of each fiber

  	int numFibers = network.size();

  	int f;

  

  	for(f = 0; f < numFibers; f++)

  	{

  		result += calcFiberLength(f);		

  	}

  	return result;

  

  }

  

  rtsOBJ rtsNetwork::LoadOBJModel(const char *filename)

  {

  	rtsOBJ model;

  	model.LoadFile(filename);

  

  	//empty the current network if it isn't already

  	network.clear();

  

  	//get the number of filaments

  	int lineNum = model.getNumLines();

  

  	int vertexNum, v, vIndex;		//for keeping track of the vertices in each line

  

  	for(int l=0; l<lineNum; l++)

  	{

  		FilamentType fiber;							//create a new fiber

  		vertexNum = model.getNumLineVertices(l);	//get the number of vertices in the line

  

  		for(v = 0; v<vertexNum; v++)				//convert the line to a fiber

  		{

  			vIndex = model.getLineVertex(l, v);

  			fiber.push_back(model.getVertex3d(vIndex));

  		}

  		network.push_back(fiber);					//store the converted fiber in the network

  	}

  

  	//calculate the graph components

  	calcGraph();

  

  	//set the boundary

  	AABB bound = model.getBoundingBox();

  	boundary.x = ceil(bound.max.x);

  	boundary.y = ceil(bound.max.y);

  	boundary.z = ceil(bound.max.z);

  

  	return model;

  	

  }

  

  void rtsNetwork::AddOBJModel(const char *filename)

  {

  	rtsOBJ model;

  	model.LoadFile(filename);

  

  	//get the number of filaments

  	int lineNum = model.getNumLines();

  

  	int vertexNum, v, vIndex;		//for keeping track of the vertices in each line

  

  	for(int l=0; l<lineNum; l++)

  	{

  		FilamentType fiber;							//create a new fiber

  		vertexNum = model.getNumLineVertices(l);	//get the number of vertices in the line

  

  		for(v = 0; v<vertexNum; v++)				//convert the line to a fiber

  		{

  			vIndex = model.getLineVertex(l, v);

  			fiber.push_back(model.getVertex3d(vIndex));

  		}

  		network.push_back(fiber);					//store the converted fiber in the network

  	}

  

  	//calculate the graph components

  	calcGraph();

  

  	/*//set the boundary

  	AABB bound = model.getBoundingBox();

  	boundary.x = ceil(bound.max.x);

  	boundary.y = ceil(bound.max.y);

  	boundary.z = ceil(bound.max.z);

  	*/

  

  }

  

  void rtsNetwork::outputFiberToSWC(int e, int node_from, int parent_id)

  {

  	EdgeList[e].valid = false;

  	int p;

  	point3D<float> outPoint;

  	//if we are traversing the fiber front-to-back

  	if(EdgeList[e].v0 == node_from)

  	{

  		if(parent_id == -1)

  		{

  			p=0;

  			outPoint = network[e][p] + position;

  			outfile<<id<<" "<<2<<" "<<outPoint.x<<" "<<outPoint.y<<" "<<outPoint.z<<" "<<1.0<<" "<<parent_id<<endl;

  		}

  		else

  		{

  			p=1;

  			outPoint = network[e][p] + position;

  			outfile<<id<<" "<<2<<" "<<outPoint.x<<" "<<outPoint.y<<" "<<outPoint.z<<" "<<1.0<<" "<<parent_id<<endl;

  		}

  		p++;

  		id++;

  		for(; p<network[e].size(); p++)

  		{

  			outPoint = network[e][p] + position;

  			outfile<<id<<" "<<2<<" "<<outPoint.x<<" "<<outPoint.y<<" "<<outPoint.z<<" "<<1.0<<" "<<id-1<<endl;

  			id++;

  		}

  	}

  	//if we are traversing the fiber back-to-front

  	else

  	{

  		if(parent_id == -1)

  		{

  			p=network[e].size()-1;

  			outPoint = network[e][p] + position;

  			outfile<<id<<" "<<2<<" "<<outPoint.x<<" "<<outPoint.y<<" "<<outPoint.z<<" "<<1.0<<" "<<parent_id<<endl;

  		}

  		else

  		{

  			p=network[e].size()-2;

  			outPoint = network[e][p] + position;

  			outfile<<id<<" "<<2<<" "<<outPoint.x<<" "<<outPoint.y<<" "<<outPoint.z<<" "<<1.0<<" "<<parent_id<<endl;

  		}

  		p--;

  		id++;

  		for(; p>=0; p--)

  		{

  			outPoint = network[e][p] + position;

  			outfile<<id<<" "<<2<<" "<<outPoint.x<<" "<<outPoint.y<<" "<<outPoint.z<<" "<<1.0<<" "<<id-1<<endl;

  			id++;

  		}

  	}

  

  }

  void rtsNetwork::traverseGraph(int node, int parent_id)

  {

  	//if the node is valid

  	if(NodeList[node].valid)

  	{

  		NodeList[node].valid = false;

  		int num_edges = NodeList[node].edges.size();

  		for(int e = 0; e<num_edges; e++)

  		{

  			if(EdgeList[NodeList[node].edges[e]].valid)

  			{

  				outputFiberToSWC(NodeList[node].edges[e], node, parent_id);

  				int newNode = EdgeList[NodeList[node].edges[e]].v0;

  				if(newNode != node)

  					traverseGraph(newNode, id-1);

  				else

  					traverseGraph(EdgeList[NodeList[node].edges[e]].v1, id-1);

  			}

  		}

  	}

  

  

  }

  

  void rtsNetwork::SetOutputPosition(float x, float y, float z)

  {

  	position.x = x;

  	position.y = y;

  	position.z = z;

  }

  void rtsNetwork::SaveSWCModel(const char *filename, float root_x, float root_y)

  {

  	cout<<filename<<endl;

  	outfile.open(filename);

  	//recursively iterate through the network saving the elements to an SWC file

  	int node;

  	id = 1;

  

  	//set the root seed point

  	point3D<float> rootSeed(root_x, root_y, 0);

  	float distance = 9999999;

  	int closest_node;

  

  	//find the closest node to the root seed

  	for(node = 0; node != NodeList.size(); node++)

  	{

  		float length = (NodeList[node].p - rootSeed).Length();

  		if(length < distance)

  		{

  			closest_node = node;

  			distance = length;

  			cout<<length<<endl;

  		}

  	}

  	traverseGraph(closest_node, -1);

  

  	outfile.close();

  	

  }

  

  void rtsNetwork::SaveSWCModel(const char* filename)

  {

  	cout<<filename<<endl;

  	outfile.open(filename);

  	//recursively iterate through the network saving the elements to an SWC file

  	int node;

  	id = 1;

  

  	//set the root seed point

  	

  	//find the closest node to the root seed

  	for(node = 0; node != NodeList.size(); node++)

  	{

  		if(NodeList[node].valid)

  			traverseGraph(node, -1);

  	}

  	

  

  	outfile.close();

  }

  

  void rtsNetwork::ScaleNetwork(float x, float y, float z)

  {

  

  	NetworkType::iterator f;

  	FilamentType::iterator p;

  

  	for(f = network.begin(); f!=network.end(); f++)

  		for(p = (*f).begin(); p!= (*f).end(); p++)

  		{

  			(*p).x = (*p).x * x;

  			(*p).y = (*p).y * y;

  			(*p).z = (*p).z * z;

  		}

  

  	calcGraph();

  }

  rtsOBJ rtsNetwork::CreateModel()

  {

  	rtsOBJ model;

  	/*

  	NetworkType::iterator f;

  	unsigned int numVerts, v;

  	for(f=network.begin(); f!=network.end(); f++)

  	{

  		model.objBegin(OBJ_LINE_STRIP);

  		

  		numVerts = (*f).size();

  		for(v=0; v<numVerts; v++)

  		{

  			model.objVertex3f((*f)[v].x, (*f)[v].y, (*f)[v].z);

  		}

  		

  		model.objEnd();

  	}

  	*/

  

  	//add all of the vertices to the OBJ

  	int num_vertices = NodeList.size();

  	int v;

  	for(v=0; v<num_vertices; v++)

  	{

  		model.insertVertexPosition(NodeList[v].p.x, NodeList[v].p.y, NodeList[v].p.z);

  	}

  

  	//for each edge

  	int num_edges = EdgeList.size();

  	int e;

  	unsigned int* buffer = new unsigned int[10000];

  	

  	for(e=1; e<num_edges-1; e++)

  	{	

  		buffer[0] = EdgeList[e].v0;

  		

  		//walk along the fiber

  		num_vertices = network[e].size()-1;

  		for(v=1; v<num_vertices; v++)

  		{

  			buffer[v] = model.getNumVertices();

  			model.insertVertexPosition(network[e][v].x, network[e][v].y, network[e][v].z);

  		}

  		

  		buffer[v] = EdgeList[e].v1;

  

  		model.insertLine(v+1, buffer, NULL, NULL);

  	}

  	

  

  	return model;

  

  }

  

  

  

  void rtsNetwork::calcGraph()

  {

  	//make sure that all graph information is cleared

  	EdgeList.clear();

  	NodeList.clear();

  

  	//find the maximum extents of the fiber network

  	int numFibers = network.size();

  	int f;

  	float Max = 0;

  	float temp;

  	for(f=0; f<numFibers; f++)

  	{

  		temp = max(network[f].front().x,

  			   max(network[f].front().y,

  			   max(network[f].front().z,

  			   max(network[f].back().x,

  			   max(network[f].back().y, 

  			   network[f].back().z)))));

  		if(temp > Max) Max = temp;

  	}

  

  	//place each point ID inside the octree

  	unsigned int id = 0;

  	Octree<unsigned int> tree(OCTREE_SIZE);

  	tree.setEmptyValue(UINT_MAX);

  	unsigned int v0, v1;

  

  

  	for(f=0; f<numFibers; f++)

  	{

  		//get the appropriate id from the tree

  		NodeType v0pos, v1pos;

  		v0pos.p = network[f].front();

  		v1pos.p = network[f].back();

  		v0pos.valid = 1;

  		v1pos.valid = 1;

  		v0 = tree(v0pos.p.x, v0pos.p.y, v0pos.p.z);

  		v1 = tree(v1pos.p.x, v1pos.p.y, v1pos.p.z);

  

  		//if the id doesn't exist, add it

  		if(v0 == UINT_MAX)

  		{

  			v0 = id;								//set the id of the current vertex

  			tree(v0pos.p.x, v0pos.p.y, v0pos.p.z) = id;	//add the id to the octree

  			NodeList.push_back(v0pos);	//add the node position to the node list

  

  			id++;									//increment the id

  		}

  		if(v1 == UINT_MAX)

  		{

  			v1 = id;								//set the id of the current vertex

  			tree(v1pos.p.x, v1pos.p.y, v1pos.p.z) = id;	//add the id to the octree

  			NodeList.push_back(v1pos);	//add the node position to the node list

  

  			id++;									//increment the id

  		}

  

  		//add the current edge to the edge list

  		EdgeType e;

  		e.v0 = v0;

  		e.v1 = v1;

  		e.valid = 1;

  		e.length = calcFiberLength(f);

  		EdgeList.push_back(e);

  		//add this edge to each point's edge list

  		NodeList[e.v0].edges.push_back(EdgeList.size() - 1);

  		NodeList[e.v1].edges.push_back(EdgeList.size() - 1);

  

  		//cout<<"Edge: "<<v0<<"--->"<<v1<<"  "<<"w = "<<e.w<<endl;

  	}

  

  	/*Computes a connectivity matrix based on the edge list and vertices in Attributes*/

  

  	/*

  	//create the matrix and zero it out

  	Array2D<unsigned int> matrix(NodeList.size(), NodeList.size());

  	unsigned int numNodes = NodeList.size();

  	int x, y;

  	for(x=0; x<numNodes; x++)

  		for(y=0; y<numNodes; y++)

  			matrix(x, y) = 0;

  

  	//iterate through each edge, assigning values to the connectivity matrix

  	vector<EdgeType>::iterator e;

  	for(e = EdgeList.begin(); e!= EdgeList.end(); e++)

  	{

  		matrix((*e).v0, (*e).v1) = 1;

  		matrix((*e).v1, (*e).v0) = 1;

  	}

  

  	ConnectivityMatrix = matrix;

  	*/

  }

  

  vector<BranchType> rtsNetwork::getFiberAngles(unsigned int fiber)

  {

  	vector<BranchType> result;

  

  	int b;

  	vector3D<float> currentTrajectory;

  	vector3D<float> branchTrajectory;

  	unsigned int f;

  

  	unsigned int node = EdgeList[fiber].v0;

  

  	int numBranches = NodeList[node].edges.size();	

  	currentTrajectory = calcTrajectory(network[fiber], 0).Normalize();

  	//currentTrajectory.print();

  	for(b=0; b<numBranches; b++)

  	{

  		f = NodeList[node].edges[b];

  		if(f != fiber && EdgeList[f].valid)

  		{

  			if(EdgeList[f].v0 == node)

  				branchTrajectory = calcTrajectory(network[f], 0).Normalize();

  			else

  				branchTrajectory = calcTrajectory(network[f], 1).Normalize();

  			//branchTrajectory.print();

  			BranchType newBranch;

  			newBranch.angle = acos((branchTrajectory*(-1))*currentTrajectory)*(180.0/3.14159);

  			newBranch.branch_id = f;

  			result.push_back(newBranch);

  		}

  		

  	}

  

  	node = EdgeList[fiber].v1;

  

  	numBranches = NodeList[node].edges.size();	

  	currentTrajectory = calcTrajectory(network[fiber], 1).Normalize();

  	//currentTrajectory.print();

  	for(b=0; b<numBranches; b++)

  	{

  		f = NodeList[node].edges[b];

  		if(f != fiber && EdgeList[f].valid)

  		{

  			if(EdgeList[f].v0 == node)

  				branchTrajectory = calcTrajectory(network[f], 0).Normalize();

  			else

  				branchTrajectory = calcTrajectory(network[f], 1).Normalize();

  			//branchTrajectory.print();

  			BranchType newBranch;

  			newBranch.angle = acos((branchTrajectory*(-1))*currentTrajectory)*(180.0/3.14159);

  			newBranch.branch_id = f;

  			result.push_back(newBranch);

  		}

  		

  	}

  	

  	//mark the fiber as traversed

  	EdgeList[fiber].valid = false;

  

  	return result;

  }

  //public

  void rtsNetwork::CalculateAttributes()

  {

  	Attributes.TotalFiberLength = calcTotalLength();

  	Attributes.NumFibers = network.size();

  	

  	Attributes.NumPoints = 0;

  	Attributes.TotalVolume = 0;

  	Attributes.NumDisconnectedFibers = 0;

  	Attributes.NumBoundaryFibers = 0;

  	int numFibers = network.size();

  	for(int f=0; f<numFibers; f++)

  	{

  		Attributes.NumPoints += network[f].size();

  		Attributes.TotalVolume += EdgeList[f].volume;

  		if(NodeList[EdgeList[f].v0].edges.size() == 1 ||

  			NodeList[EdgeList[f].v1].edges.size() ==1)

  			if(isBoundaryNode(EdgeList[f].v0) || isBoundaryNode(EdgeList[f].v1))

  				Attributes.NumBoundaryFibers++;

  			else

  				Attributes.NumDisconnectedFibers++;

  

  	}

  

  	Attributes.NumBifurcations = 0;

  	int numNodes = NodeList.size();

  	for(int n=0; n<numNodes; n++)

  		if(NodeList[n].edges.size() >= 2)

  			Attributes.NumBifurcations++;

  

  

  }

  

  

  

  

  

  rtsOBJ rtsNetwork::Repair(float max_distance, float cos_angle)

  {

  	/*This function repairs the network by serching a solid angle around each endpoint

  	for a suitable candidate endpoint to connect to.*/

  

  	cout<<"repairing...."<<endl;

  

  	rtsOBJ preview;

  

  	//create the complete and incomplete connectable lists

  	list<ConnectableType> complete;

  	list<ConnectableType> incomplete;

  

  	cout<<"Finding Valence-1 Fibers..."<<endl;

  	//go through each fiber, adding ones with valence-1 endpoints to <incomplete>

  	int numFibers = network.size();

  	int f;

  	unsigned int v0;

  	unsigned int v1;

  	int numVerts, v;

  	for(f=0; f<numFibers; f++)

  	{

  		ConnectableType c;

  		v0 = EdgeList[f].v0;

  		v1 = EdgeList[f].v1;

  		//test valence and boundary

  		if(NodeList[v0].edges.size() == 1 && !isBoundaryNode(v0))

  		{

  			c.front = false;

  		}

  		else c.front = true;

  

  		if(NodeList[v1].edges.size() == 1 && !isBoundaryNode(v1))

  		{

  			c.back = false;

  		}

  		else c.back = true;

  

  		if(c.front == false || c.back == false)

  		{

  			c.fiber = network[f];

  			c.id = f;

  			incomplete.push_back(c);

  			numVerts = c.fiber.size();

  			//preview.objBegin(OBJ_LINE_STRIP);

  			//for(v=0; v<numVerts; v++)

  			//	preview.objVertex3f(c.fiber[v].x, c.fiber[v].y, c.fiber[v].z);

  			//preview.objEnd();

  		}

  		else

  		{

  			c.fiber = network[f];

  			c.id = f;

  			complete.push_back(c);

  		}

  		

  	}

  	cout<<"Valence-1 Fibers: "<<incomplete.size()<<endl;

  

  	//find all of the possible connections

  	list<ConnectableType>::iterator i;

  	list<ConnectableType>::iterator j;

  	list<ConnectableType>::iterator temp;

  	FilamentType newFiber;

  	bool endpoint0, endpoint1;

  	

  	int iIndex, jIndex;

  

  	iIndex = 0;

  	for(i=incomplete.begin(); i!=incomplete.end(); i++)

  	{

  		jIndex = iIndex;

  		j = i;

  		while(j != incomplete.end() && i != incomplete.end())

  		{

  			if(i!=j)

  			{

  				if(isConnectable((*i), (*j), endpoint0, endpoint1, max_distance, cos_angle))

  				{

  					ConnectableType newConnectable;

  					newConnectable.fiber = combineFibers((*i).fiber, endpoint0, (*j).fiber, endpoint1);

  					//determine the new connectivity

  					if(endpoint0 == 0)

  						newConnectable.front = (*i).back;

  					else

  						newConnectable.front = (*i).front;

  

  					if(endpoint1 == 0)

  						newConnectable.back = (*j).back;

  					else

  						newConnectable.back = (*j).front;

  

  					//remove the previous connectables

  					temp = i;

  					i++;

  					iIndex++;

  					incomplete.erase(temp);

  					temp = j;

  					//this is just in case the fibers are next to each otehr

  					if(j == i)

  					{

  						i++;

  						iIndex++;

  						j = i;

  						jIndex = iIndex;

  					}

  					else

  					{

  						j = i;

  						jIndex = iIndex;

  					}

  					incomplete.erase(temp);

  					//insert the new connectable in the proper list

  					if(newConnectable.front == 0 || newConnectable.back == 0)

  						incomplete.push_back(newConnectable);

  					else

  						complete.push_back(newConnectable);

  					

  					

  

  					//numVerts = newConnectable.fiber.size();

  					//preview.objBegin(OBJ_LINE_STRIP);

  					//for(v=0; v<numVerts; v++)

  					//	preview.objVertex3f(newConnectable.fiber[v].x, newConnectable.fiber[v].y, newConnectable.fiber[v].z);

  					//preview.objEnd();

  				}

  				else

  				{

  					j++;

  					jIndex++;

  				}

  				

  			}

  			else

  			{

  				j++;

  				jIndex++;

  			}

  			//cout<<"i: "<<iIndex<<"j: "<<jIndex<<endl;

  			//cout<<"size of incomplete: "<<incomplete.size()<<endl;

  		}

  		iIndex++;

  	}

  

  	//reconstruct the fiber list

  	vector<FilamentType> newNetwork;

  	for(i=incomplete.begin(); i!=incomplete.end(); i++)

  		newNetwork.push_back((*i).fiber);

  	for(i=complete.begin(); i!=complete.end(); i++)

  		newNetwork.push_back((*i).fiber);

  

  	network = newNetwork;

  	calcGraph();

  

  	

  	//build the model to return

  	preview = CreateModel();

  	

  	return preview;

  

  }

  void rtsNetwork::printFiberStats(unsigned int fiber)

  {

  	/*

  	cout<<"-----------------------------------------------------"<<endl;

  	cout<<"Fiber nodes:"<<endl;

  	int numVerts = network[fiber].size();

  	for(int v=0; v<numVerts; v++)

  	{

  		cout<<network[fiber][v].x<<","<<network[fiber][v].y<<","<<network[fiber][v].z<<endl;

  	}

  	*/

  	cout<<"------------------------------------------------------"<<endl;

  	cout<<"Selected node: "<<fiber<<endl;

  

  

  	int b;

  	vector3D<float> currentTrajectory;

  	vector3D<float> branchTrajectory;

  	unsigned int f;

  

  	//get the list of angles

  	vector<BranchType> angles = getFiberAngles(fiber);

  

  	unsigned int node = EdgeList[fiber].v0;

  	int numBranches = NodeList[node].edges.size()-1;	

  	cout<<"V0 Valence: "<<getConnections(node).size()<<endl; 

  

  	for(b=0; b<numBranches; b++)

  	{

  		cout<<"     ["<<angles[b].branch_id<<"] "<<angles[b].angle<<(char)248<<endl;

  	}

  

  

  	node = EdgeList[fiber].v1;	

  	cout<<"V1 Valence: "<<getConnections(node).size()<<endl;

  	numBranches = angles.size();

  	for(; b<numBranches; b++)

  	{

  		cout<<"     ["<<angles[b].branch_id<<"] "<<angles[b].angle<<(char)248<<endl;

  	}

  

  	reset();

  

  	cout<<"End Points: ["<<NodeList[EdgeList[fiber].v0].p.x<<","

  						<<NodeList[EdgeList[fiber].v0].p.y<<","

  						<<NodeList[EdgeList[fiber].v0].p.z<<"]"

  						<<"["<<NodeList[EdgeList[fiber].v1].p.x<<","

  						<<NodeList[EdgeList[fiber].v1].p.y<<","

  						<<NodeList[EdgeList[fiber].v1].p.z<<"]"<<endl;

  	cout<<"Fiber Length: "<<calcFiberLength(fiber)<<"um"<<endl;

  	cout<<"Average Radius: "<<EdgeList[fiber].avg_radius<<"um"<<endl;

  	cout<<"Min Radius: "<<EdgeList[fiber].min_radius<<"um"<<endl;

  	cout<<"Max Radius: "<<EdgeList[fiber].max_radius<<"um"<<endl;

  	cout<<"Fiber Volume: "<<EdgeList[fiber].volume<<"um^3"<<endl;

  	cout<<"Maximum Bend: "<<calcFiberBend(fiber)<<endl;

  	cout<<"------------------------------------------------------"<<endl;

  

  	int numVertices = network[fiber].size();

  	//for(int v=0; v<numVertices; v++)

  	//	cout<<network[fiber][v].x<<","<<network[fiber][v].y<<","<<network[fiber][v].z<<endl;

  

  

  }

  void rtsNetwork::Clean(float degenerate_length = 5, float barb_length = 30)

  {

  	int changes;

  	do

  	{

  		changes = 0;

  		int degen = cleanDegenerateEdges(degenerate_length);

  		cout<<"Degen: "<<degen<<endl;

  		changes += degen;

  		

  		int barbs = cleanBarbs(barb_length);

  		cout<<"Barbs: "<<barbs<<endl;

  		changes += barbs;

  		

  		int redundant = cleanRedundantEdges();

  		cout<<"Redundant: "<<redundant<<endl;

  		changes += redundant;

  

  	}while(changes != 0);

  

  

  }

  void rtsNetwork::ReMesh(float resample_length)

  {

  	//Resample the skeleton at the given frequency

  	NetworkType newNetwork;

  

  	int numFibers = network.size();

  	int f;

  	int numVerts, v;

  	FilamentType newFiber;

  	vector3D<float> distanceVector;

  	point3D<float> prevPoint;

  	for(f=0; f<numFibers; f++)

  	{

  		newFiber.clear();

  		numVerts = network[f].size();

  		newFiber.push_back(network[f][0]);

  		prevPoint = network[f][0];

  		for(v=1; v<numVerts-1; v++)

  		{

  			distanceVector = toTissue(network[f][v]) - toTissue(prevPoint);

  			if(distanceVector.Length() >= resample_length)

  			{

  				newFiber.push_back(network[f][v]);

  				prevPoint = network[f][v];

  			}

  		}

  		

  		//deal with the last vertex

  		//newFiber.push_back(network[f][v]);

  		

  		distanceVector = toTissue(network[f][v]) - toTissue(prevPoint);

  		if(distanceVector.Length() >= resample_length || newFiber.size() == 1)

  		{

  			newFiber.push_back(network[f][v]);

  		}

  		else

  		{

  			//change the last point

  			newFiber[newFiber.size() - 1] = network[f][v];

  		}

  		

  		

  		//cout<<"old: "<<network[f].size()<<endl;

  		//cout<<"new: "<<newFiber.size()<<endl;

  		newNetwork.push_back(newFiber);

  	}

  

  	//replace the network

  	//cout<<"old network: "<<network.size()<<endl;

  	//cout<<"new network: "<<newNetwork.size()<<endl;

  	network = newNetwork;

  	calcGraph();

  

  }

  void rtsNetwork::SaveAngles(const char *filename)

  {

  	ofstream outfile;

  	outfile.open(filename);

  

  	int errors = 0;

  

  	//get the list of angles for each fiber

  	unsigned int f;

  	int numFibers = EdgeList.size();

  	for(f=0; f<numFibers; f++)

  	{

  		vector<BranchType> angles = getFiberAngles(f);

  		for(int a=0; a<angles.size(); a++)

  		{

  			outfile<<angles[a].angle<<endl;

  

  			//print out errors

  			if(angles[a].angle >179 && angles[a].angle < 181)

  			{

  				//cout<<"ERROR"<<endl;

  				//printFiberStats(f);

  				errors++;

  			}

  			if(angles[a].angle >90 && angles[a].angle < 90.01)

  			{

  				//cout<<"ERROR"<<endl;

  				//printFiberStats(f);

  				errors++;

  			}

  			if(angles[a].angle < 0)

  			{

  				//cout<<"ERROR"<<endl;

  				//printFiberStats(f);

  				errors++;

  			}

  		}

  	}

  

  	cout<<"ERRORS: "<<errors<<endl;

  

  	outfile.close();

  

  	reset();

  

  }

  void rtsNetwork::SaveBends(const char *filename)

  {

  	ofstream outfile;

  	outfile.open(filename);

  

  	int numFibers = EdgeList.size();

  	for(int f = 0; f<numFibers; f++)

  		if(network[f].size() >2)

  			outfile<<calcFiberBend(f)<<endl;

  

  	outfile.close();

  

  }

  

  void rtsNetwork::SaveLengths(const char *filename)

  {

  	ofstream outfile;

  	outfile.open(filename);

  

  	int numFibers = EdgeList.size();

  	for(int f = 0; f<numFibers; f++)

  		if(network[f].size() >2)

  			outfile<<calcFiberLength(f)<<endl;

  

  	outfile.close();

  }

  

  void rtsNetwork::SaveMathematicaGraph(const char* filename)

  {

  	ofstream outfile;

  	outfile.open(filename);

  

  	outfile<<"<< Combinatorica`"<<endl;

  	outfile<<"<< GraphUtilities`"<<endl;

  	outfile<<"e = {";

  

  	int numEdges = EdgeList.size();

  	int e;

  

  	for(e=0; e<numEdges-1; e++)

  	{

  		outfile<<""<<EdgeList[e].v0+1<<"->"<<EdgeList[e].v1+1<<",";

  	}

  	outfile<<""<<EdgeList[e].v0+1<<"->"<<EdgeList[e].v1+1<<"};";

  

  	//assign weights

  	outfile<<endl<<"w = {";

  	for(e=0; e<numEdges-1; e++)

  	{

  		outfile<<calcFiberLength(e)<<", ";

  	}

  	outfile<<calcFiberLength(e)<<"};";

  

  	int numVertices = NodeList.size();

  	int v;

  	outfile<<endl<<"v = {";

  	for(v=0; v<numVertices-1; v++)

  	{

  		//outfile<<"{{"<<NodeList[v].p.x<<","<<NodeList[v].p.y<<"}}, ";

  		outfile<<"{"<<NodeList[v].p.x<<","<<NodeList[v].p.y<<","<<NodeList[v].p.z<<"}, ";

  	}

  	//outfile<<"{{"<<NodeList[v].p.x<<","<<NodeList[v].p.y<<"}}};";

  	outfile<<"{"<<NodeList[v].p.x<<","<<NodeList[v].p.y<<","<<NodeList[v].p.z<<"}};";

  

  

  	outfile.close();

  }

  

  void rtsNetwork::SaveMathematicaNodeDistances(const char* filename)

  {

  	ofstream outfile;

  	outfile.open(filename);

  

  	//for each node, save the distance between all other nodes

  	int numNodes = NodeList.size();

  	int i, j;

  	vector3D<float> distance;

  	outfile<<"d = {";

  	for(i=0; i<numNodes-1; i++)

  	{

  		outfile<<"{";

  		for(j=0; j<numNodes-1; j++)

  		{

  			distance = toTissue(NodeList[i].p) - toTissue(NodeList[j].p);

  			outfile<<distance.Length()<<",";

  		}

  		distance = toTissue(NodeList[i].p) - toTissue(NodeList[j].p);

  		outfile<<distance.Length()<<"},";

  	}

  	outfile<<"{";

  	for(j=0; j<numNodes-1; j++)

  	{

  		distance = toTissue(NodeList[i].p) - toTissue(NodeList[j].p);

  		outfile<<distance.Length()<<",";

  	}

  	distance = toTissue(NodeList[i].p) - toTissue(NodeList[j].p);

  	outfile<<distance.Length()<<"}};";

  

  	outfile.close();

  		

  

  }

  void rtsNetwork::RemoveTerminalComponents()

  {

  	int removed;

  	do{

  		removed = EdgeList.size();

  		//removes fibers that are shorter than the specified length

  		NetworkType newNetwork;

  

  		unsigned int numEdges, e;

  		numEdges = EdgeList.size();

  		unsigned int numVertices, v;

  

  		for(e=0; e<numEdges; e++)

  		{

  			//if the fiber is not an end fiber (one vertex has valence 1)

  			if(getConnections(EdgeList[e].v0).size() != 1 && getConnections(EdgeList[e].v1).size() != 1)

  			{

  					newNetwork.push_back(network[e]);

  					removed--;

  				

  			}

  

  		}

  

  		network.clear();

  		network = newNetwork;

  

  		Clean();

  		calcGraph();

  	}while(removed != 0);

  

  }

  

  void rtsNetwork::RemoveBoundaryComponents()

  {

  	int removed;

  	do{

  		removed = EdgeList.size();

  		//removes fibers that are shorter than the specified length

  		NetworkType newNetwork;

  

  		unsigned int numEdges, e;

  		numEdges = EdgeList.size();

  		unsigned int numVertices, v;

  

  		for(e=0; e<numEdges; e++)

  		{

  			//if the fiber is not an end fiber (one vertex has valence 1)

  			if(getConnections(EdgeList[e].v0).size() != 1 && getConnections(EdgeList[e].v1).size() != 1)

  			{

  					newNetwork.push_back(network[e]);

  					removed--;

  				

  			}

  			//if the fiber is an end fiber

  			else if(!isBoundaryNode(EdgeList[e].v0) && !isBoundaryNode(EdgeList[e].v1))

  			{

  				newNetwork.push_back(network[e]);

  				removed--;

  			}

  

  

  		}

  

  		network.clear();

  		network = newNetwork;

  

  		Clean();

  		calcGraph();

  	}while(removed != 0);

  

  }

  void rtsNetwork::GetRadiusFromVolume(const char *filename, unsigned int threshold, unsigned int range = 2)

  {

  	//load the volume image

  	VOLType::Pointer volume = LoadVOL(filename);

  	VOLType::SpacingType spacing;

  	// Note: measurement units (e.g., mm, inches, etc.) are defined by the application.

  	spacing[0] = 0.86; // spacing along X

  	spacing[1] = 1.0; // spacing along Y

  	spacing[2] = 1.4; // spacing along Z

  	volume->SetSpacing(spacing);

  	SaveSlice(volume, 20, "original.bmp");

  	//volume->ReleaseDataFlagOn();

  

  /*

  	cout<<"Expanding Image..."<<endl;

  	typedef itk::ExpandImageFilter<VOLType, VOLType> ResizeFilterType;

  	ResizeFilterType::Pointer resizeFilter = ResizeFilterType::New();

  	resizeFilter->SetExpandFactors(resample);

  	resizeFilter->SetInput(volume);

  	resizeFilter->Update();

  	VOLType::Pointer resizedImage = resizeFilter->GetOutput();

  	SaveSlice(resizedImage, 20, "resized.bmp");

  	cout<<"done."<<endl;

  */	

  

  	typedef itk::DiscreteGaussianImageFilter<VOLType, FloatType> BlurFilterType;

  	BlurFilterType::Pointer blurFilter = BlurFilterType::New();

  	blurFilter->SetUseImageSpacingOn();

  	float variance[3] = {0.61, 1.5, 0.61};

  	blurFilter->SetVariance(variance);

  	blurFilter->SetMaximumKernelWidth(8);

  	blurFilter->SetInput(volume);

  	try

  	{

  		blurFilter->Update();

  	}

  	catch(itk::ExceptionObject & exp)

  	{

  		std::cout<<exp<<std::endl;

  	}

  	FloatType::Pointer blurredImage = blurFilter->GetOutput();

  

  	typedef itk::CastImageFilter<FloatType, VOLType> CastingFilterType;

  	CastingFilterType::Pointer castFilter = CastingFilterType::New();

  	castFilter->SetInput(blurredImage);

  	castFilter->Update();

  	VOLType::Pointer resizedImage = castFilter->GetOutput();

  

  	SaveSlice(resizedImage, 20, "resized.bmp");

  

  

  	//threshold the input image

  	cout<<"Thresholding Volume..."<<endl;

  	typedef itk::BinaryThresholdImageFilter<VOLType, VOLType> ThresholdFilterType;

  	ThresholdFilterType::Pointer thresholdFilter = ThresholdFilterType::New();

  	thresholdFilter->SetInsideValue(255);

  	thresholdFilter->SetOutsideValue(0);

  	thresholdFilter->SetLowerThreshold(threshold);

  	thresholdFilter->SetUpperThreshold(255);

  	thresholdFilter->SetInput(resizedImage);

  	try

  	{

  		thresholdFilter->Update();

  	}

  	catch(itk::ExceptionObject & exp)

  	{

  		std::cout<<exp<<std::endl;

  	}

  	VOLType::Pointer thresholdImage = thresholdFilter->GetOutput();

  	//volume->ReleaseData();

  	//thresholdFilter->ReleaseDataFlagOn();

  

  	SaveSlice(thresholdImage, 20, "threshold.bmp");

  

  	cout<<"done."<<endl;

  

  	

  	cout<<"Computing Distance Field..."<<endl;

  	//create the distance transform filter

  	typedef itk::DanielssonDistanceMapImageFilter<VOLType, FloatType> DistanceFilterType;

  	DistanceFilterType::Pointer distanceFilter = DistanceFilterType::New();

  	distanceFilter->SetInput(thresholdImage);

  	distanceFilter->UseImageSpacingOn();

  

  	try

  	{

  		distanceFilter->Update();

  	}

  	catch(itk::ExceptionObject & exp)

  	{

  		std::cout<<exp<<std::endl;

  	}

  	//SaveSlice(distanceFilter->GetOutput(), 20, "distance.bmp");

  	FloatType::Pointer distanceMap = distanceFilter->GetOutput();

  	//SaveFloatRAW(distanceMap, "distanceMap.raw");

  	cout<<"done."<<endl;

  

  	cout<<"Computing Radii..."<<endl;

  

  	

  

  	//create a neighborhood iterator

  	typedef itk::ConstNeighborhoodIterator<FloatType> NeighborhoodIteratorType;

  	NeighborhoodIteratorType::RadiusType radius;

  	radius.Fill(range);

  	NeighborhoodIteratorType i(radius, distanceMap, distanceMap->GetBufferedRegion());

  	vector<NeighborhoodIteratorType::OffsetType> OffsetVector;

  	OffsetVector.resize((range*2+1)*(range*2+1)*(range*2+1));

  	int x, y, z, j;

  	j=0;

  	for(x=-range; x<=range; x++)

  		for(y=-range; y<=range; y++)

  			for(z=-range; z<=range; z++)

  			{

  				OffsetVector[j][0]=x;

  				OffsetVector[j][1]=y;

  				OffsetVector[j][2]=z;

  				//cout<<"offset: "<<OffsetVector[j]<<endl;

  				j++;

  			}

  

  

  	int numFibers = network.size();

  	int f, numVertices, v;

  	point3D<float> position;

  	float total_radius, near_radius, total_volume, max_radius, min_radius;

  	FloatType::IndexType pixelIndex;

  	float prev_radius;

  	point3D<float> p0, p1;

  	float height;

  	for(f=0; f<numFibers; f++)

  	{

  		total_radius = 0;

  		total_volume = 0;

  		max_radius = 0;

  		min_radius = 999;

  		numVertices = network[f].size();

  		for(v=0; v<numVertices; v++)

  		{

  			position = network[f][v];

  			//pixelIndex[0] = position.x*resample;

  			//pixelIndex[1] = position.y*resample;

  			//pixelIndex[2] = position.z*resample;

  			pixelIndex[0] = position.x;

  			pixelIndex[1] = position.y;

  			pixelIndex[2] = position.z;

  			i.SetLocation(pixelIndex);

  			near_radius = 0;

  			for(j=0; j<OffsetVector.size(); j++)

  			{

  				near_radius = max(near_radius, (float)i.GetPixel(OffsetVector[j]));

  				//cout<<(float)i.GetPixel(OffsetVector[j])<<endl;

  				//cout<<"j = "<<j<<"   "<<i.GetPixel(OffsetVector[j])<<endl;

  			}

  			//cout<<"v = "<<v<<"   "<<near_radius<<endl;

  			if(near_radius > max_radius)

  				max_radius = near_radius;

  			if(near_radius < min_radius)

  				min_radius = near_radius;

  			total_radius += near_radius;

  			if(v>0)

  			{

  				//compute the volume of the segment

  				p0 = toTissue(network[f][v-1]);

  				p1 = toTissue(network[f][v]);

  				height = (p1 - p0).Length();

  				total_volume += ((3.14159*height)/3.0)*(prev_radius * prev_radius + near_radius*near_radius + prev_radius*near_radius);

  

  			}

  			prev_radius = near_radius;

  		}

  		EdgeList[f].avg_radius = total_radius/numVertices;

  		EdgeList[f].min_radius = min_radius;

  		EdgeList[f].max_radius = max_radius;

  		EdgeList[f].volume = total_volume;

  	}

  

  	cout<<"done."<<endl;

  

  }

  void rtsNetwork::GetRadiusFromDistanceMap(const char *filename, int range = 2)

  {

  	//load the volume image

  	FloatType::Pointer distanceMap = LoadRAWFloat(filename, 256, 256, 256);

  

  	//create a neighborhood iterator

  	typedef itk::ConstNeighborhoodIterator<FloatType> NeighborhoodIteratorType;

  	NeighborhoodIteratorType::RadiusType radius;

  	radius.Fill(range);

  	NeighborhoodIteratorType i(radius, distanceMap, distanceMap->GetRequestedRegion());

  	vector<NeighborhoodIteratorType::OffsetType> OffsetVector;

  	OffsetVector.resize((range*2+1)*(range*2+1)*(range*2+1));

  	int x, y, z, j;

  	j=0;

  	for(x=-range; x<=range; x++)

  		for(y=-range; y<=range; y++)

  			for(z=-range; z<=range; z++)

  			{

  				OffsetVector[j][0]=x;

  				OffsetVector[j][1]=y;

  				OffsetVector[j][2]=z;

  				//cout<<"offset: "<<OffsetVector[j]<<endl;

  				j++;

  			}

  

  	

  

  	cout<<"Computing Radii..."<<endl;

  	int numFibers = network.size();

  	int f, numVertices, v;

  	point3D<float> position;

  	float total_radius, max_radius;

  	FloatType::IndexType pixelIndex;

  	for(f=0; f<numFibers; f++)

  	{

  		total_radius = 0;

  		numVertices = network[f].size();

  		for(v=0; v<numVertices; v++)

  		{

  			position = network[f][v];

  			pixelIndex[0] = position.x;

  			pixelIndex[1] = position.y;

  			pixelIndex[2] = position.z;

  			i.SetLocation(pixelIndex);

  			max_radius = 0;

  			for(j=0; j<OffsetVector.size(); j++)

  			{

  				max_radius = max(max_radius, (float)i.GetPixel(OffsetVector[j]));

  				//cout<<"j = "<<j<<"   "<<i.GetPixel(OffsetVector[j])<<endl;

  			}

  

  			total_radius += max_radius;

  		}

  		EdgeList[f].avg_radius = total_radius/numVertices;

  	}

  

  	cout<<"done."<<endl;

  

  }

  

  point3D<float> rtsNetwork::GetFiberRadius(unsigned int fiber)

  {

  	point3D<float> result;

  	result.x = EdgeList[fiber].min_radius;

  	result.y = EdgeList[fiber].max_radius;

  	result.z = EdgeList[fiber].avg_radius;

  	return result;

  }