Blame view

legacy/rts_old_Camera.cpp 11.5 KB
f1402849   dmayerich   renewed commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
  #include "rtsCameraController.h"

  #include <math.h>

  rtsCamera::rtsCamera()

  {

  	position = point3D<float>(0, 0, 0);

  	view_vector = vector3D<float>(0, 0, -1);

  	up_vector = vector3D<float>(0, 1, 0);

  	lookat_point = point3D<float>(0, 0, -1);

  

  	pers_view_angle = 60;

  	ortho_width = 1.0;

  	ortho_height = 1.0;

  

  	near_plane = 1;

  	far_plane = 100;

  }

  

  rtsCamera::LookAt(

  

  /*

  rtsCamera::rtsCamera(rtsCameraState initial_state)

  {

  	m_camera_state = initial_state;

  

  	//make sure that the view and lookat vectors are orthogonal

  	vector3D<float> lookat = m_camera_state.lookat - m_camera_state.position;

  	vector3D<float> up = m_camera_state.up;

  	vector3D<float> side = lookat.X(up);

  	up = side.X(lookat);

  	up.Normalize();

  	m_camera_state.up = up;

  }

  

  rtsCameraState rtsCamera::getState()

  {

  	return m_camera_state;

  }

  

  

  

  

  void rtsCamera::setState(rtsCameraState camera_state)

  {

  	m_camera_state = camera_state;

  	

  	//re-orthogonalize the vectors

  	vector3D<float> view = m_camera_state.lookat - m_camera_state.position;

  	vector3D<float> side = view.X(m_camera_state.up);

  	m_camera_state.up = side.X(view);

  	m_camera_state.up.Normalize();

  }

  

  void rtsCamera::LookAt(point3D<float> point)

  {

  	//looks at a point

  

  	//find the new view vector

  	vector3D<float> view = point - m_camera_state.position;

  

  	//normalize the view vector

  	view.Normalize();

  

  	//prepare a new side vector and up vector

  	vector3D<float> side;

  	vector3D<float> up;

  

  	//get the up vector

  	//if the new viewvector is at 0 or 180 degrees to the up vector

  	float cos_angle = view*m_camera_state.up;

  	if(cos_angle == 1.0f || cos_angle == -1.0f)

  	{

  		//re-calculate the up vector

  		up = m_camera_state.up.X(m_camera_state.lookat - m_camera_state.position);

  	}

  	else

  	{

  		//otherwise, just get the current up vector

  		up = m_camera_state.up;

  	}

  	

  

  	//correct the up vector based on the new view vector

  	side = up.X(view);

  	up = view.X(side);

  	up.Normalize();

  

  	//change the camera state

  	m_camera_state.up = up;

  	m_camera_state.lookat = point;

  }

  

  void rtsCamera::Position(point3D<float> p)

  {

  	m_camera_state.position = p;

  }

  

  void rtsCamera::Up(vector3D<float> up)

  {

  	m_camera_state.up = up;

  }

  

  void rtsCamera::DollyPosition(point3D<float> p)

  {

  	vector3D<float> adjustment = p-m_camera_state.position;

  	m_camera_state.position = p;

  	m_camera_state.lookat = m_camera_state.lookat + adjustment;

  }

  

  point3D<float> rtsCamera::getLookAtPoint()

  {

  	return m_camera_state.lookat;

  }

  

  

  

  void rtsCamera::Pan(double x, double y)

  {

  	//first calculate the lookat and side vectors

  	vector3D<float> lookatvector=m_camera_state.lookat - m_camera_state.position;

  	vector3D<float> sidevector = lookatvector.X(m_camera_state.up);

  	sidevector.Normalize();

  

  	m_camera_state.position=m_camera_state.position+sidevector*x;

  	m_camera_state.lookat=m_camera_state.lookat+sidevector*x;

  

  	vector3D<float> upvector = lookatvector.X(sidevector);

  	upvector.Normalize();

  	m_camera_state.position=m_camera_state.position+upvector*y;

  	m_camera_state.lookat=m_camera_state.lookat+upvector*y;

  }

  

  void rtsCamera::RotateUpDown(double degrees)

  {

  	//first calculate the lookat and side vectors

  	vector3D<float> lookatvector=m_camera_state.lookat-m_camera_state.position;

  	vector3D<float> sidevector = lookatvector.X(m_camera_state.up);

  	m_camera_state.up=sidevector.X(lookatvector);

  	m_camera_state.up.Normalize();

  	sidevector.Normalize();

  

  	//translate the look-at point to the origin (and the camera with it)

  	point3D<float> origin = point3D<float>(0.0, 0.0, 0.0);

  	vector3D<float> translateCamera = origin-m_camera_state.lookat;

  

  	point3D<float> translatedCamera=m_camera_state.position+translateCamera;

  

  	//the next step is to rotate the side vector so that it lines up with the z axis

  	double a=sidevector.x;

  	double b=sidevector.y;

  	double c=sidevector.z;

  

  	double d=sqrt(b*b + c*c);

  

  	//error correction for when we are already looking down the z-axis

  	if(d==0)

  		return;

  

  	vector3D<float> XZplane = vector3D<float>(translatedCamera.x, 

  								(translatedCamera.y*c/d - translatedCamera.z*b/d), 

  								(translatedCamera.y*b/d + translatedCamera.z*c/d));

  

  	vector3D<float> Zaxis = vector3D<float>(XZplane.x*d - XZplane.z*a,

  								XZplane.y,

  								XZplane.x*a + XZplane.z*d);

  

  	vector3D<float> rotated = vector3D<float>(Zaxis.x*cos(TORADIANS(degrees)) - Zaxis.y*sin(TORADIANS(degrees)),

  								Zaxis.x*sin(TORADIANS(degrees)) + Zaxis.y*cos(TORADIANS(degrees)),

  								Zaxis.z);

  

  	vector3D<float> XZout = vector3D<float>( rotated.x*(d/(a*a + d*d)) + rotated.z*(a/(a*a + d*d)),

  								rotated.y,

  								rotated.x*(-a/(a*a+d*d)) + rotated.z*(d/(a*a + d*d)));

  

  	vector3D<float> result = vector3D<float>( XZout.x,

  								XZout.y*(c*d/(b*b + c*c)) + XZout.z*(b*d/(b*b + c*c)),

  								XZout.y*(-b*d/(b*b + c*c)) + XZout.z*(c*d/(b*b + c*c)));

  

  	result=result-translateCamera;

  

  	m_camera_state.position.x=result.x;

  	m_camera_state.position.y=result.y;

  	m_camera_state.position.z=result.z;

  

  }

  

  void rtsCamera::Yaw(double degrees)

  {

  	//basically, we have to rotate the look-at point around the up vector

  	//first, translate the look-at point so that the camera is at the origin

  	point3D<float> origin(0.0, 0.0, 0.0);

  	point3D<float> temp_lookat = m_camera_state.lookat - (m_camera_state.position - origin);

  	

  	//create a rotation matrix to rotate the lookat point around the up vector

  	float x=m_camera_state.up.x;

  	float y=m_camera_state.up.y;

  	float z=m_camera_state.up.z;

  	float c=cos(TORADIANS(-degrees));

  	float s=sin(TORADIANS(-degrees));

  	float t=1.0 - cos(TORADIANS(-degrees));

  	float m00 = t*x*x + c;

  	float m01 = t*x*y + s*z;

  	float m02 = t*x*z - s*y;

  	float m03 = 0;

  	float m10 = t*x*y - s*z;

  	float m11 = t*y*y + c;

  	float m12 = t*y*z + s*x;

  	float m13 = 0;

  	float m20 = t*x*z + s*y;

  	float m21 = t*y*z - s*x;

  	float m22 = t*z*z + c;

  	float m23 = 0;

  	float m30 = 0;

  	float m31 = 0;

  	float m32 = 0;

  	float m33 = 1;

  	matrix4x4<float> rotation(m00, m01, m02, m03,

  					   m10, m11, m12, m13,

  					   m20, m21, m22, m23,

  					   m30, m31, m32, m33);

  	point3D<float> result = rotation*temp_lookat + (m_camera_state.position - origin);

  	m_camera_state.lookat = result;

  }

  

  void rtsCamera::Pitch(double degrees)

  {

  	//basically, we have to rotate the look-at point and up vector around the side vector

  	//first, translate the look-at point so that the camera is at the origin

  	point3D<float> origin(0.0, 0.0, 0.0);

  	

  	//find all three necessary vectors

  	vector3D<float> temp_lookat = m_camera_state.lookat - m_camera_state.position;

  	double lookat_length = temp_lookat.Length();

  	vector3D<float> temp_up = m_camera_state.up;

  	vector3D<float> temp_side = temp_lookat.X(temp_up);

  	temp_lookat.Normalize();

  	temp_up.Normalize();

  	temp_side.Normalize();

  

  

  	//create a rotation matrix to rotate around the side vector

  	float x=temp_side.x;

  	float y=temp_side.y;

  	float z=temp_side.z;

  	float c=cos(TORADIANS(degrees));

  	float s=sin(TORADIANS(degrees));

  	float t=1.0 - cos(TORADIANS(degrees));

  	float m00 = t*x*x + c;

  	float m01 = t*x*y + s*z;

  	float m02 = t*x*z - s*y;

  	float m03 = 0;

  	float m10 = t*x*y - s*z;

  	float m11 = t*y*y + c;

  	float m12 = t*y*z + s*x;

  	float m13 = 0;

  	float m20 = t*x*z + s*y;

  	float m21 = t*y*z - s*x;

  	float m22 = t*z*z + c;

  	float m23 = 0;

  	float m30 = 0;

  	float m31 = 0;

  	float m32 = 0;

  	float m33 = 1;

  	matrix4x4<float> rotation(m00, m01, m02, m03,

  					   m10, m11, m12, m13,

  					   m20, m21, m22, m23,

  					   m30, m31, m32, m33);

  	

  	//rotate the up and look-at vectors around the side vector

  	vector3D<float> result_lookat = rotation*temp_lookat;

  	vector3D<float> result_up = rotation*temp_up;

  	result_lookat.Normalize();

  	result_up.Normalize();

  

  	m_camera_state.lookat = m_camera_state.position + result_lookat * lookat_length;

  	m_camera_state.up = result_up;

  }

  	

  

  void rtsCamera::RotateLeftRight(double degrees)

  //this function rotates the camera around the up vector (which always points along hte positive

  //Y world axis).

  {

  	//translate the look-at point to the origin (and the camera with it)

  	point3D<float> origin = point3D<float>(0.0, 0.0, 0.0);

  	vector3D<float> translateCamera = origin-m_camera_state.lookat;

  

  	point3D<float> translatedCamera=m_camera_state.position+translateCamera;

  

  

  	//perform the rotation around the look-at point

  	//using the y-axis as the rotation axis

  	point3D<float> newcamera;

  	newcamera.x=translatedCamera.x*cos(TORADIANS(degrees)) - translatedCamera.z*sin(TORADIANS(degrees));

  	newcamera.z=translatedCamera.x*sin(TORADIANS(degrees)) + translatedCamera.z*cos(TORADIANS(degrees));

  	newcamera.y=translatedCamera.y;

  

  	vector3D<float> newup;

  	newup.x=m_camera_state.up.x*cos(TORADIANS(degrees)) - m_camera_state.up.z*sin(TORADIANS(degrees));

  	newup.z=m_camera_state.up.x*sin(TORADIANS(degrees)) + m_camera_state.up.z*cos(TORADIANS(degrees));

  	newup.y=m_camera_state.up.y;

  

  	//translate the lookat point back to it's original position (along with the camera)

  	newcamera=newcamera-translateCamera;

  

      m_camera_state.position.x=newcamera.x;

  	m_camera_state.position.y=newcamera.y;

  	m_camera_state.position.z=newcamera.z;

  

  	m_camera_state.up.x=newup.x;

  	m_camera_state.up.y=newup.y;

  	m_camera_state.up.z=newup.z;

  	m_camera_state.up.Normalize();

  

  }

  

  void rtsCamera::Forward(double distance)

  {

  	//calculate the lookat vector (direction of travel)

  	vector3D<float> old_lookat=m_camera_state.lookat-m_camera_state.position;

  	old_lookat.Normalize();

  

  	//calculate the new position of the camera

  	point3D<float> new_position = m_camera_state.position+old_lookat*distance;

  	//now calculate the new lookat vector

  	vector3D<float> new_lookat=m_camera_state.lookat-new_position;

  	//find the length of the new lookat vector

  

  	//move the camera to the new position

  	m_camera_state.position = new_position;

  }

  

  void rtsCamera::ScaleForward(double factor, double min, double max)

  {

  	//This function moves the camera forward, scaling the magnitude

  	//of the motion by the length of the view vector.  Basically, the closer

  	//the camera is to the lookat point, the slower the camera moves.

  

  	//calculate the lookat vector (direction of travel)

  	vector3D<float> lookatvector=m_camera_state.lookat-m_camera_state.position;

  	//find the length of the view vector

  	double length = lookatvector.Length();

  	//normalize

  	lookatvector.Normalize();

  

  	//prevent motion if the bounds would be passed

  	double new_distance = length - (factor*length);

  	if(new_distance < min || new_distance > max)

  		factor = 0;

  	//move the camera

  	m_camera_state.position=m_camera_state.position+lookatvector*factor*length;

  	lookatvector=m_camera_state.lookat-m_camera_state.position;

  	

  }

  

  void rtsCamera::DollyLeftRight(double distance)

  {

  	//calculate the side vector vector (direction of travel)

  	vector3D<float> lookatvector=m_camera_state.lookat-m_camera_state.position;

  	vector3D<float> side = lookatvector.X(m_camera_state.up);

  	side.Normalize();	

  

  	m_camera_state.position=m_camera_state.position+side*distance;

  	m_camera_state.lookat = m_camera_state.lookat + side*distance;

  	//lookatvector=m_camera_state.lookat-m_camera_state.position;

  }

  

  void rtsCamera::DollyUpDown(double distance)

  {

  	//move along the up vector

  	m_camera_state.up.Normalize();	

  

  	m_camera_state.position=m_camera_state.position+m_camera_state.up*distance;

  	m_camera_state.lookat = m_camera_state.lookat + m_camera_state.up*distance;

  	//lookatvector=m_camera_state.lookat-m_camera_state.position;

  }

  

  void rtsCamera::Zoom(double angle)

  {

  	m_camera_state.pers_view_angle += angle;

  }

  

  */