Blame view

python/structen.py 7.85 KB
7ce7cd7b   David Mayerich   added structure t...
1
2
3
4
5
6
7
8
9
10
11
12
  # -*- coding: utf-8 -*-
  """
  Created on Sun Mar 12 21:54:40 2017
  
  @author: david
  """
  
  import numpy
  import scipy.ndimage
  import progressbar
  import glob
  
95f1e985   David Mayerich   updated structure...
13
  def st2(I, s=1, dtype=numpy.float32):   
7ce7cd7b   David Mayerich   added structure t...
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
      
      #calculates the 2D structure tensor for an image using a gaussian window with standard deviation s
      
      #calculate the gradient
      dI = numpy.gradient(I)
      
      #calculate the dimensions of the tensor field
      field_dims = [dI[0].shape[0], dI[0].shape[1], 3]
      
      #allocate space for the tensor field
      Tg = numpy.zeros(field_dims, dtype=dtype)
      
      #calculate the gradient components of the tensor
      ti = 0
      for i in range(2):
          for j in range(i + 1):
              Tg[:, :, ti] = dI[j] * dI[i]
              ti = ti + 1
      
      #blur the tensor field
      T = numpy.zeros(field_dims, dtype=dtype)
      
      for i in range(3):
          T[:, :, i] = scipy.ndimage.filters.gaussian_filter(Tg[:, :, i], [s, s])
  
      
      return T
  
  def st3(I, s=1):
      #calculate the structure tensor field for the 3D input image I given the window size s in 3D
      #check the format for the window size
      if type(s) is not list:
          s = [s] * 3
      elif len(s) == 1:
          s = s * 3
      elif len(s) == 2:
          s.insert(1, s[0])
          
      print("\nCalculating gradient...")
      dI = numpy.gradient(I)
      #calculate the dimensions of the tensor field
      field_dims = [dI[0].shape[0], dI[0].shape[1], dI[0].shape[2], 6]
      
      #allocate space for the tensor field
      Tg = numpy.zeros(field_dims, dtype=numpy.float32)
      
      #calculate the gradient components of the tensor
      ti = 0
      print("Calculating tensor components...")
      bar = progressbar.ProgressBar()
      bar.max_value = 6
      for i in range(3):
          for j in range(i + 1):
              Tg[:, :, :, ti] = dI[j] * dI[i]
              ti = ti + 1
              bar.update(ti)
      
      #blur the tensor field
      T = numpy.zeros(field_dims, dtype=numpy.float32)
      
      print("\nConvolving tensor field...")
      bar = progressbar.ProgressBar()
      bar.max_value = 6
      for i in range(6):
          T[:, :, :, i] = scipy.ndimage.filters.gaussian_filter(Tg[:, :, :, i], s)
          bar.update(i+1)
          
      return T
  
  def st(I, s=1):
      if I.ndim == 3:
          return st3(I, s)
      elif I.ndim == 2:
          return st2(I, s)
      else:
          print("Image must be 2D or 3D")
      return
          
     
      
  def sym2mat(T):
      #Calculate the full symmetric matrix from a list of lower triangular elements.
      #The lower triangular components in the input field T are assumed to be the
      #   final dimension of the input matrix.
      
      #       | 1  2  4  7  |
      #       | 0  3  5  8  |
      #       | 0  0  6  9  |
      #       | 0  0  0  10 |
     
      in_s = T.shape
      
      #get the number of tensor elements
      n = in_s[T.ndim - 1]
      
      #calculate the dimension of the symmetric matrix
      d = int(0.5 * (numpy.sqrt(8. * n + 1.) - 1.))
      
      #calculate the dimensions of the output field
      out_s = list(in_s)[:-1] + [d] + [d]
  
      #allocate space for the output field
      R = numpy.zeros(out_s)
      
      ni = 0
      for i in range(d):
          for j in range(i + 1):
              R[..., i, j] = T[..., ni]
              if i != j:
                  R[..., j, i] = T[..., ni]
              ni = ni + 1
      
      return R   
  
  def st2vec(S, vector='largest'):
      #Create a color image from a 2D or 3D structure tensor slice
29a37cd9   David Mayerich   fixed matrix_sym ...
130
131
132
133
      
      if(S.ndim != 3):
          print("ERROR: a 2D slice is expected")
          return
7ce7cd7b   David Mayerich   added structure t...
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        
      #convert the field to a full rank-2 tensor
      T = sym2mat(S);
      del(S)
      
      #calculate the eigenvectors and eigenvalues
      l, v = numpy.linalg.eig(T)
      
      #get the dimension of the tensor field
      d = T.shape[2]
      
      #allocate space for the vector field
      V = numpy.zeros([T.shape[0], T.shape[1], 3])
      
      idx = l.argsort()
      
      for di in range(d):
          if vector == 'smallest':
              b = idx[:, :, 0] == di
          elif vector == 'largest':
              b = idx[:, :, d-1] == di
          else:
              b = idx[:, :, 1] == di
          V[b, 0:d] = v[b, :, di]
      
      return V
  
  def loadstack(filemask):
      #Load an image stack as a 3D grayscale array
      
      #get a list of all files matching the given mask
      files = [file for file in glob.glob(filemask)]
      
      #calculate the size of the output stack
      I = scipy.misc.imread(files[0])
      X = I.shape[0]
      Y = I.shape[1]
      Z = len(files)
      
      #allocate space for the image stack
      M = numpy.zeros([X, Y, Z]).astype('float32')
      
      #create a progress bar
      bar = progressbar.ProgressBar()
      bar.max_value = Z
      
      #for each file
      for z in range(Z):
          #load the file and save it to the image stack
          M[:, :, z] = scipy.misc.imread(files[z], flatten="True").astype('float32')
          bar.update(z+1)
      return M
  
  def anisotropy(S):
  
      Sf = sym2mat(S)
      
      #calculate the eigenvectors and eigenvalues
      l, v = numpy.linalg.eig(Sf)
      
      #store the sorted eigenvalues
      ls = numpy.sort(l)
      l0 = ls[:, :, 0]
      l1 = ls[:, :, 1]
      l2 = ls[:, :, 2]
      
      #calculate the linear anisotropy
      Cl = (l2 - l1)/(l2 + l1 + l0)
      
      #calculate the planar anisotropy
      Cp = 2 * (l1 - l0) / (l2 + l1 + l0)
      
      #calculate the spherical anisotropy
      Cs = 3 * l0 / (l2 + l1 + l0)
      
      #calculate the fractional anisotropy
      l_hat = (l0 + l1 + l2)/3
      fa_num = (l2 - l_hat) ** 2 + (l1 - l_hat) ** 2 + (l0 - l_hat) ** 2;
      fa_den = l0 ** 2 + l1 ** 2 + l2 ** 2
      FA = numpy.sqrt(3./2.) * numpy.sqrt(fa_num) / numpy.sqrt(fa_den)
      
      return FA, Cl, Cp, Cs
  
  def st2amira(filename, T):
      #generates a tensor field that can be imported into Amira
      
      #   0    dx dx   ----> 0
      #   1    dx dy   ----> 1
      #   2    dy dy   ----> 3
      #   3    dx dz   ----> 2
      #   4    dy dz   ----> 4
      #   5    dz dz   ----> 5
      
      #swap the 2nd and 3rd tensor components
95f1e985   David Mayerich   updated structure...
228
229
230
      A = numpy.copy(T)
      A[..., 3] = T[..., 2]
      A[..., 2] = T[..., 3]
7ce7cd7b   David Mayerich   added structure t...
231
232
      
      #roll the tensor axis so that it is the leading component
14379866   David Mayerich   updated amira out...
233
      #A = numpy.rollaxis(A, A.ndim - 1)
7ce7cd7b   David Mayerich   added structure t...
234
      A.tofile(filename)
95f1e985   David Mayerich   updated structure...
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
      print("\n", A.shape)
  
  def resample3(T, s=2):
      #resample a tensor field by an integer factor s
      #This function first convolves the field with a box filter and then
      #   re-samples to create a smaller field
      
      #check the format for the window size
      if type(s) is not list:
          s = [s] * 3
      elif len(s) == 1:
          s = s * 3
      elif len(s) == 2:
          s.insert(1, s[0])
      s = numpy.array(s)
      
      bar = progressbar.ProgressBar()
      bar.max_value = T.shape[3]
      
      #blur with a uniform box filter of size r
      for t in range(T.shape[3]):
          T[..., t] = scipy.ndimage.filters.uniform_filter(T[..., t], 2 * s)
          bar.update(t+1)
          
      #resample at a rate of r
      R = T[::s[0], ::s[1], ::s[2], :]
      return R
  
  def color3(prefix, T, vector='largest', aniso=True):
      #Saves a stack of color images corresponding to the eigenvector and optionally scaled by anisotropy
      
      bar = progressbar.ProgressBar()
      bar.max_value = T.shape[2]
      
      #for each z-axis slice
      for z in range(T.shape[2]):
          S = T[:, :, z, :]                           #get the slice
          V = st2vec(S, vector='smallest')   #calculate the vector
          C = numpy.absolute(V)                       #calculate the absolute value
          
          if aniso == True:                              #if the image is scaled by anisotropy
              FA, Cl, Cp, Cs = anisotropy(S)          #calculate the anisotropy of the slice
              if vector == 'largest':
                  A = Cl
              elif vector == 'smallest':
                  A = Cp
          else:                                       #otherwise just scale by 1
              A = numpy.ones(T.shape[0], T.shape[1])
          image = C * numpy.expand_dims(A, 3)
          
          filename = prefix + str(z).zfill(4) + ".bmp"
          scipy.misc.imsave(filename, image)
          bar.update(z + 1)