Blame view

legacy/rtsMath.cpp 17.9 KB
f1402849   dmayerich   renewed commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
  /*These files contain basic structures used frequently in the program and in computer

  graphics in general.  For more information, see the header file.

  

  -David Mayerich, 8/20/05*/

  

  #include "rtsMath.h"

  

  //#include<iostream>

  

  //using namespace std;

  

  

  

  point3D::point3D()

  {

  	x=0; y=0; z=0;

  }

  

  point3D::point3D(double newx, double newy, double newz)

  {

  	x=newx; y=newy; z=newz;

  }

  

  point3D point3D::operator +(vector3D param)

  {

  	point3D result;

  	result.x=x+param.x;

  	result.y=y+param.y;

  	result.z=z+param.z;

  

  	return result;

  }

  

  point3D point3D::operator -(vector3D param)

  {

  	point3D result;

  	result.x=x-param.x;

  	result.y=y-param.y;

  	result.z=z-param.z;

  

  	return result;

  }

  

  vector3D point3D::operator -(point3D param)

  {

  	vector3D result;

  	result.x=x-param.x;

  	result.y=y-param.y;

  	result.z=z-param.z;

  

  	return result;

  }

  

  void point3D::print()

  {

  	cout<<x<<","<<y<<","<<z<<endl;

  }

  

  vector3D vector3D::operator+(vector3D param)

  {

  	vector3D result;

  	result.x=x+param.x;

  	result.y=y+param.y;

  	result.z=z+param.z;

  

  	return result;

  }

  

  vector3D vector3D::operator -(vector3D param)

  {

  	vector3D result;

  	result.x=x-param.x;

  	result.y=y-param.y;

  	result.z=z-param.z;

  

  	return result;

  }

  double vector3D::operator*(vector3D param)

  {

  	return x*param.x + y*param.y + z*param.z;

  }

  	

  vector3D::vector3D()

  {

  	x=0; y=0; z=0;

  }

  

  vector3D::vector3D(double newx, double newy, double newz)

  {

  	x=newx;

  	y=newy;

  	z=newz;

  }

  

  int vector3D::normalize()

  {

  	double length=sqrt(x*x + y*y + z*z);

  	if(length == 0)

  	{

  		x=0.0;

  		y=0.0;

  		z=0.0;

  	}

  	else

  	{

  		x=x/length;

  		y=y/length;

  		z=z/length;

  	}

  	

  	return 1;

  }

  

  double vector3D::length()

  {

  	return sqrt(x*x + y*y + z*z);

  }

  

  vector3D vector3D::cross(vector3D param)

  {

  	vector3D result;

  	result.x=y*param.z - z*param.y;

  	result.y=z*param.x - x*param.z;

  	result.z=x*param.y - y*param.x;

  

  	return result;

  }

  

  vector3D vector3D::operator *(double param)

  {

  	vector3D result;

  	result.x=x*param;

  	result.y=y*param;

  	result.z=z*param;

  

  	return result;

  }

  

  void vector3D::print()

  {

  	cout<<x<<","<<y<<","<<z<<endl;

  }

  

  matrix4x4::matrix4x4()

  {

  	//initialize to the identity matrix

  	for(int i=0; i<16; i++)

  		matrix[i] = 0.0;

  	matrix[0] = matrix[5] = matrix[10] = matrix[15] = 1.0;

  }

  

  matrix4x4::matrix4x4(float m00, float m01, float m02, float m03,

  			  float m10, float m11, float m12, float m13,

  			  float m20, float m21, float m22, float m23,

  			  float m30, float m31, float m32, float m33)

  {

  	float new_matrix[16] = {m00, m01, m02, m03,m10, m11, m12, m13, m20, m21, m22, m23,m30, m31, m32, m33};

  	for(int i=0; i<16; i++)

  		matrix[i] = new_matrix[i];

  }

  

  matrix4x4::matrix4x4(vector3D basis_x, vector3D basis_y, vector3D basis_z)

  {

  	//initialize to the identity matrix

  	for(int i=0; i<16; i++)

  		matrix[i] = 0.0;

  	matrix[0] = matrix[5] = matrix[10] = matrix[15] = 1.0;

  	//insert the vectors

  	matrix[0] = basis_x.x;

  	matrix[1] = basis_x.y;

  	matrix[2] = basis_x.z;

  

  	matrix[4] = basis_y.x;

  	matrix[5] = basis_y.y;

  	matrix[6] = basis_y.z;

  

  	matrix[8] = basis_z.x;

  	matrix[9] = basis_z.y;

  	matrix[10] = basis_z.z;

  }

  

  double matrix4x4::operator()(unsigned int row, unsigned int col)

  {

  	return matrix[row*4 + col];

  }

  

  void matrix4x4::gl_set_matrix(float* gl_matrix)

  {

  	//for(int row = 0; row<4; row++)

  	//	for(int col = 0; col<4; col++)

  	//		matrix[row*4 + col] = gl_matrix[col*4 + row];

  	for(int i=0; i<16; i++)

  		matrix[i] = gl_matrix[i];

  }

  

  

  void matrix4x4::gl_get_matrix(float* gl_matrix)

  {

  	//for(int row = 0; row<4; row++)

  	//	for(int col = 0; col<4; col++)

  	//		gl_matrix[col*4 + row] = matrix[row*4 + col];

  	for(int i=0; i<16; i++)

  		gl_matrix[i] = matrix[i];

  

  }

  

  matrix4x4 matrix4x4::submatrix(unsigned int start_col, unsigned int start_row, unsigned int end_col, unsigned int end_row)

  {

  	matrix4x4 result;

  	int col, row;

  	for(row = start_row; row<=end_row; row++)

  		for(col = start_col; col <= end_col; col++)

  			result.matrix[col*4 + row] = matrix[col*4 + row];

  	return result;

  

  }

  

  matrix4x4 matrix4x4::transpose()

  {

  	matrix4x4 result;

  	int col, row;

  	for(row = 0; row <4; row++)

  		for(col=0; col<4; col++)

  			result.matrix[col*4 + row] = matrix[row*4+ col];

  	return result;

  }

  

  

  

  vector3D matrix4x4::basis_x()

  {

  	vector3D basis(matrix[0], matrix[1], matrix[2]);

  	return basis;

  }

  

  vector3D matrix4x4::basis_y()

  {

  	vector3D basis(matrix[4], matrix[5], matrix[6]);

  	return basis;

  }

  

  vector3D matrix4x4::basis_z()

  {

  	vector3D basis(matrix[8], matrix[9], matrix[10]);

  	return basis;

  }

  

  

  

  point3D matrix4x4::operator *(point3D param)

  {

  	point3D result;

  	//result.x = matrix[0][0]*param.x + matrix[1][0]*param.y + matrix[2][0]*param.z + matrix[3][0];

  	//result.y = matrix[0][1]*param.x + matrix[1][1]*param.y + matrix[2][1]*param.z + matrix[3][1];

  	//result.z = matrix[0][2]*param.x + matrix[1][2]*param.y + matrix[2][2]*param.z + matrix[3][2];

  	//float homogeneous = matrix[0][3] + matrix[1][3] + matrix[2][3] + matrix[3][3];

  	result.x = matrix[0]*param.x + matrix[4]*param.y + matrix[8]*param.z + matrix[12];

  	result.y = matrix[1]*param.x + matrix[5]*param.y + matrix[9]*param.z + matrix[13];

  	result.z = matrix[2]*param.x + matrix[6]*param.y + matrix[10]*param.z + matrix[14];

  	float homogeneous = matrix[3] + matrix[7] + matrix[11] + matrix[15];

  	result.x/=homogeneous;

  	result.y/=homogeneous;

  	result.z/=homogeneous;

  	

  	return result;

  }

  

  vector3D matrix4x4::operator*(vector3D param)

  {

  	vector3D result;

  	result.x = matrix[0]*param.x + matrix[4]*param.y + matrix[8]*param.z;

  	result.y = matrix[1]*param.x + matrix[5]*param.y + matrix[9]*param.z;

  	result.z = matrix[2]*param.x + matrix[6]*param.y + matrix[10]*param.z;

  	

  	return result;

  }

  

  void matrix4x4::print()

  {

  	for(int row = 0; row<4; row++)

  	{

  		for(int col = 0; col<4; col++)

  		{

  			cout<<matrix[col*4 + row]<<" ";

  		}

  		cout<<endl;

  	}

  }

  		

  

  RGBA::RGBA(double red, double green, double blue, double ambient)

  {

  	r=red;

  	g=green;

  	b=blue;

  	a=ambient;

  }

  

  RGBA::RGBA()

  {

  	r=1.0;

  	g=1.0;

  	b=1.0;

  	a=1.0;

  }

  

  int quaternion::normalize()

  {

  	double length=sqrt(w*w + x*x + y*y + z*z);

  	w=w/length;

  	x=x/length;

  	y=y/length;

  	z=z/length;

  

  	return 1;

  }

  

  quaternion quaternion::operator *(quaternion param)

  {

  	float A, B, C, D, E, F, G, H;

  

  

  	A = (w + x)*(param.w + param.x);

  	B = (z - y)*(param.y - param.z);

  	C = (w - x)*(param.y + param.z); 

  	D = (y + z)*(param.w - param.x);

  	E = (x + z)*(param.x + param.y);

  	F = (x - z)*(param.x - param.y);

  	G = (w + y)*(param.w - param.z);

  	H = (w - y)*(param.w + param.z);

  

  	quaternion result;

  	result.w = B + (-E - F + G + H) /2;

  	result.x = A - (E + F + G + H)/2; 

  	result.y = C + (E - F + G - H)/2; 

  	result.z = D + (E - F - G + H)/2;

  

  	return result;

  }

  

  double* quaternion::toMatrix()

  {

  

  

      double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;

  

  

      // calculate coefficients

      x2 = x + x; y2 = y + y;

      z2 = z + z;

      xx = x * x2; xy = x * y2; xz = x * z2;

      yy = y * y2; yz = y * z2; zz = z * z2;

      wx = w * x2; wy = w * y2; wz = w * z2;

  

  	double m[4][4];

      m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz;

      m[2][0] = xz + wy; m[3][0] = 0.0;

  

      m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz);

      m[2][1] = yz - wx; m[3][1] = 0.0;

  

  

      m[0][2] = xz - wy; m[1][2] = yz + wx;

      m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0;

  

  

      m[0][3] = 0; m[1][3] = 0;

      m[2][3] = 0; m[3][3] = 1;

  

  	double* orientationmatrix=(double*)m;

  	char c;

  

  

  	double* result=new double[16];

  	double* array=(double*)m;

  	for(int i=0; i<16; i++)

  		result[i]=array[i];

  

  	return result;

  }

  

  quaternion::quaternion()

  {

  	w=0.0; x=0.0; y=0.0; z=0.0;

  }

  

  quaternion::quaternion(double c, double i, double j, double k)

  {

  	w=c;  x=i;  y=j;  z=k;

  }

  

  ray3D::ray3D(point3D start_point, vector3D dir)

  {

  	point=start_point;

  	direction=dir;

  	direction.normalize();

  }

  

  ray3D::ray3D(point3D pointA, point3D pointB)

  {

  	point = pointA;

  	direction = pointB - pointA;

  	direction.normalize();

  }

  

  ray3D::ray3D()

  {

  	point = point3D(0, 0, 0);

  	direction = vector3D(0, 0, 1);

  }

  

  int ray3D::intersect(plane3D plane, point3D& intersection_point)

  {

  	double NdotD = plane.normal * direction;		//determine the angle between the plane normal and the ray direction

  	if(NdotD == 0.0)								//if they are orthogonal, the ray is parallel to the plane

  		return RTS_NO_INTERSECTION;

  

  	vector3D E = point - plane.point;			//determine the vector from the ray point to the plane point

  	double NdotE = plane.normal * E;			//find the angle between the plane normal and the above calculated E

  	double t = -NdotE/NdotD;					//the intersection occurrs at time t

  

  	if(t<0)

  		return RTS_NO_INTERSECTION;

  

  	intersection_point = point + direction*t;	//find the intersection point

  	return RTS_OK;

  }

  

  

  

  plane3D::plane3D()

  {

  	point = point3D(0.0, 0.0, 0.0);

  	normal = vector3D(0.0, 0.0, 1.0);

  	normal.normalize();

  }

  

  plane3D::plane3D(point3D point_on_plane, vector3D plane_normal)

  {

  	point = point_on_plane;

  	normal = plane_normal;

  	normal.normalize();

  }

  

  

  function2D::function2D(const function2D &copy)

  {

  	m_x0 = copy.m_x0;

  	m_y0 = copy.m_y0;

  	m_x1 = copy.m_x1;

  	m_y1 = copy.m_y1;

  	m_x_resolution = copy.m_x_resolution;

  	m_y_resolution = copy.m_y_resolution;

  	m_values = new float[m_x_resolution*m_y_resolution];

  

  	for(int i=0; i < m_x_resolution*m_y_resolution; i++)

  		m_values[i] = copy.m_values[i];

  }

  function2D& function2D::operator=(const function2D& f)

  {

      if (this != &f)							// make sure not same object

  	{						

          delete m_values;

  		m_x0 = f.m_x0;

  		m_x1 = f.m_x1;

  		m_y0 = f.m_y0;

  		m_y1 = f.m_y1;

  		m_x_resolution = f.m_x_resolution;

  		m_y_resolution = f.m_y_resolution;

  		m_values = new float[m_x_resolution*m_y_resolution];

  		for(int i=0; i<m_x_resolution * m_y_resolution; i++)

  			m_values[i] = f.m_values[i];

      }

      return *this;    // Return ref for multiple assignment

  }//end operator=

  

  function2D function2D::operator*(function2D param)

  {

  	//this is a quick and dirty multiplication method (mostly for images)

  

  	if((m_x_resolution != param.m_x_resolution) || (m_y_resolution != param.m_y_resolution))

  		exit(0);

  

  	float* a_bits = m_values;

  	float* b_bits = param.getBits();

  

  	function2D result(m_x0, m_x1, m_y0, m_y1, m_x_resolution, m_y_resolution);

  	//result.m_values = new T[m_x_resolution * m_y_resolution];

  

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  		result.m_values[i] = a_bits[i]*b_bits[i];

  

  	//result.setBits((T*)result_bits);

  	return result;

  }

  function2D function2D::operator*(float param)

  {

  	function2D result(m_x0, m_x1, m_y0, m_y1, m_x_resolution, m_y_resolution);

  	for(int i = 0; i<m_x_resolution*m_y_resolution; i++)

  		result.m_values[i] = m_values[i]*param;

  

  	return result;

  }

  

  function2D function2D::operator+(function2D param)

  {

  	function2D result(m_x0, m_x1, m_y0, m_y1, m_x_resolution, m_y_resolution);

  	for(int i=0; i<m_x_resolution * m_y_resolution; i++)

  		result.m_values[i] = m_values[i] + param.m_values[i];

  	return result;

  }

  

  function2D function2D::operator+(float param)

  {

  	function2D result(m_x0, m_x1, m_y0, m_y1, m_x_resolution, m_y_resolution);

  	for(int i=0; i<m_x_resolution * m_y_resolution; i++)

  		result.m_values[i] = m_values[i] + param;

  	return result;

  }

  

  function2D function2D::operator-(function2D param)

  {

  	function2D result(m_x0, m_x1, m_y0, m_y1, m_x_resolution, m_y_resolution);

  	for(int i=0; i<m_x_resolution * m_y_resolution; i++)

  		result.m_values[i] = m_values[i] - param.m_values[i];

  	return result;

  }

  

  function2D::function2D(float domain_x0, float domain_x1, float domain_y0, float domain_y1,

  											 int x_resolution, int y_resolution)

  {

  	//set all of the member variables describing the size of the function domain

  	m_x0=domain_x0;

  	m_y0=domain_y0;

  	m_x1=domain_x1;

  	m_y1=domain_y1;

  

  	m_x_resolution = x_resolution;

  	m_y_resolution = y_resolution;

  

  	//allocate memory for the function

  	m_values = new float[x_resolution * y_resolution];

  }

  

  function2D::function2D()

  {

  	m_x0 = 0;

  	m_x1 = 0;

  	m_y0 = 0;

  	m_y1 = 0;

  	m_x_resolution = 0;

  	m_y_resolution = 0;

  	m_values = NULL;

  }

  float function2D::operator ()(float x, float y)

  {

  	if(x < m_x0 || x > m_x1)

  		return 0.0f;

  	if(y < m_y0 || y > m_y1)

  		return 0.0f;

  

  	float x_size = m_x1 - m_x0;

  	float y_size = m_y1 - m_y0;

  	float scaled_x = (x-m_x0)/x_size;

  	float scaled_y = (y-m_y0)/y_size;

  	int x_index = scaled_x * m_x_resolution;

  	int y_index = scaled_y * m_y_resolution;

  	return m_values[y_index * m_x_resolution + x_index];

  }

  

  float* function2D::getBits()

  {

  	return m_values;

  }

  

  void function2D::setBits(unsigned char* bits)

  {

  	//copy the given bits to the current function

  	//the member m_values can't just be set to bits because the datatypes may be different

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  		m_values[i] = bits[i];

  }

  

  void function2D::setBits(float* bits)

  {

  	//copy the given bits to the current function

  	//the member m_values can't just be set to bits because the datatypes may be different

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  			m_values[i] = bits[i];

  }

  

  void function2D::setBits(double* bits)

  {

  	//copy the given bits to the current function

  	//the member m_values can't just be set to bits because the datatypes may be different

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  			m_values[i] = bits[i];

  }

  void function2D::setBits(int* bits)

  {

  	//copy the given bits to the current function

  	//the member m_values can't just be set to bits because the datatypes may be different

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  		m_values[i] = bits[i];

  }

  

  

  

  function2D::~function2D()

  {

  	delete m_values;

  }

  

  void function2D::CreateGaussian(float mean_x, float mean_y, float std_dev)

  {

  	//this function creates a 2D gaussian with a mean at the center of the image

  	//and a standard deviation as specified

  	//unsigned char* gaussian = new unsigned char[width*height];

  	//create a few variables to store details about the function domain

  	float domain_x;

  	float domain_y;

  	float x_domain_length = m_x1 - m_x0;

  	float y_domain_length = m_y1 - m_y0;

  	//double high_value = (1.0/(2.0*PI*std_dev*std_dev))*exp(0.0);

  	//cucle through all values in the functions resolution

  	for(int x = 0; x<m_x_resolution; x++)

  		for(int y=0; y<m_y_resolution; y++)

  		{

  			//find the appropriate domain values associated with the array index

  			domain_x = ((x/(double)m_x_resolution)*(x_domain_length))+m_x0;

  			domain_y = ((y/(double)m_y_resolution)*(y_domain_length))+m_y0;

  			double exponent = exp(-((domain_x-mean_x)*(domain_x-mean_x) + (domain_y-mean_y)*(domain_y-mean_y))/(2.0*std_dev*std_dev));

  			m_values[y*m_x_resolution+x] = (1.0/(2.0*RTS_PI*std_dev*std_dev))*exponent;

  		}

  }

  

  void function2D::CreateConstant(float value)

  {

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  	{

  		m_values[i] = value;

  	}

  }

  

  void function2D::CreateCircleMask(float center_x, float center_y, float radius)

  {

  	float domain_x;

  	float domain_y;

  	float x_domain_length = m_x1 - m_x0;

  	float y_domain_length = m_y1 - m_y0;

  

  	//cycle through all values in the functions resolution

  	for(int x = 0; x<m_x_resolution; x++)

  		for(int y=0; y<m_y_resolution; y++)

  		{

  			//find the appropriate domain values associated with the array index

  			domain_x = ((x/(double)m_x_resolution)*(x_domain_length))+m_x0;

  			domain_y = ((y/(double)m_y_resolution)*(y_domain_length))+m_y0;

  			//find the distance between the current point and the circle center

  			point3D center(center_x, center_y, 0.0);

  			point3D current(domain_x, domain_y, 0.0);

  			vector3D difference = current - center;

  			float distance = difference.length();

  

  			//if the pixel is inside the circle, set it to 1.0

  			//otherwise, set the pixel to 0.0

  			if(distance < radius)

  				m_values[y*m_x_resolution+x] = 1.0f;

  			else

  				m_values[y*m_x_resolution+x] = 0.0f;

  		}

  }

  

  void function2D::Scale(float min, float max)

  {

  	//this method scales the function so that it exists between the values min and max

  

  	//first, find the minimum and maximum values for the function

  	int current_min_index = 0;

  	int current_max_index = 0;

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  	{

  		if(m_values[i] < m_values[current_min_index])

  			current_min_index = i;

  		if(m_values[i] > m_values[current_max_index])

  			current_max_index = i;

  	}

  		//cout<<"current max: "<<m_values[current_max_index]<<endl;

  		//cout<<"current min: "<<m_values[current_min_index]<<endl;

  		//char c;cin>>c;

  	float current_min = m_values[current_min_index];

  	float current_max = m_values[current_max_index];

  	//now loop through the function again and scale to the appropriate values

  	float scaled;

  	for(int i=0; i<m_x_resolution * m_y_resolution; i++)

  	{

  		scaled = ((m_values[i] - current_min) / (current_max - current_min));

  		m_values[i] = (scaled *(max-min)) + min;

  	}

  }

  

  void function2D::Clip(float min, float max)

  {

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  	{

  		if(m_values[i] < min)

  			m_values[i] = min;

  		else if(m_values[i] > max)

  			m_values[i] = max;

  	}

  }

  

  void function2D::Abs()

  {

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  	{

  		m_values[i] = fabs(m_values[i]);

  	}

  }

  

  float function2D::Integral()

  {

  	//this function returns the sum of all values of the function

  	float result=0.0f;

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  		result+= m_values[i];

  	return result;

  }

  

  float function2D::Average()

  {

  	//this function returns the average of all of the values of the function

  	float result=0.0f;

  	for(int i=0; i<m_x_resolution*m_y_resolution; i++)

  		result+= m_values[i];

  	result = result/(m_x_resolution*m_y_resolution);

  	return result;

  }

  

  

  line3D::line3D()

  {

  	m_p0 = point3D(0.0, 0.0, 0.0);

  	m_p1 = point3D(0.0, 0.0, 0.0);

  }

  

  line3D::line3D(point3D p0, point3D p1)

  {

  	m_p0 = p0;

  	m_p1 = p1;

  }

  

  point3D line3D::get_point(double pos)

  {

  	return m_p0 + (m_p1 - m_p0)*pos;

  }