Blame view

stim/optics/scalarmie.h 33 KB
9339fbad   David Mayerich   implementing mie ...
1
2
  #ifndef STIM_MIE_H
  #define STIM_MIE_H
8309b07a   David Mayerich   fixed some vec3 e...
3
  #include <boost/math/special_functions/bessel.hpp>
9339fbad   David Mayerich   implementing mie ...
4
5
6
  
  #include "scalarwave.h"
  #include "../math/bessel.h"
31262e83   David Mayerich   GPU implementatio...
7
  #include "../cuda/cudatools/devices.h"
9339fbad   David Mayerich   implementing mie ...
8
9
10
11
12
13
14
15
16
17
18
  #include <cmath>
  
  namespace stim{
  
  
  /// Calculate the scattering coefficients for a spherical scatterer
  template<typename T>
  void B_coefficients(stim::complex<T>* B, T a, T k, stim::complex<T> n, int Nl){
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
dd5aab2f   David Mayerich   fixed errors in s...
19
20
21
22
  	double* j_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
  	double* y_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
  	double* dj_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
  	double* dy_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
9339fbad   David Mayerich   implementing mie ...
23
  
dd5aab2f   David Mayerich   fixed errors in s...
24
25
26
27
  	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
9339fbad   David Mayerich   implementing mie ...
28
29
30
31
32
33
34
35
36
37
  
  	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
  	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)
  
  	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
  	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a
  
  	stim::complex<double> h_ka, dh_ka;
  	stim::complex<double> numerator, denominator;
  	stim::complex<double> i(0, 1);
31262e83   David Mayerich   GPU implementatio...
38
  	for(int l = 0; l <= Nl; l++){
9339fbad   David Mayerich   implementing mie ...
39
40
41
42
43
44
45
46
  		h_ka.r = j_ka[l];
  		h_ka.i = y_ka[l];
  		dh_ka.r = dj_ka[l];
  		dh_ka.i = dy_ka[l];
  
  		numerator = j_ka[l] * dj_kna[l] * (stim::complex<double>)n - j_kna[l] * dj_ka[l];
  		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
  		B[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
9339fbad   David Mayerich   implementing mie ...
47
  	}
dd5aab2f   David Mayerich   fixed errors in s...
48
49
50
  
  	//free memory
  	free(j_ka); free(y_ka);	free(dj_ka); free(dy_ka); free(j_kna); free(y_kna); free(dj_kna); free(dy_kna);
9339fbad   David Mayerich   implementing mie ...
51
52
53
54
55
56
  }
  
  template<typename T>
  void A_coefficients(stim::complex<T>* A, T a, T k, stim::complex<T> n, int Nl){
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
dd5aab2f   David Mayerich   fixed errors in s...
57
58
59
60
  	double* j_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
  	double* y_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
  	double* dj_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
  	double* dy_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
9339fbad   David Mayerich   implementing mie ...
61
  
dd5aab2f   David Mayerich   fixed errors in s...
62
63
64
65
  	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
9339fbad   David Mayerich   implementing mie ...
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  
  	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
  	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)
  
  	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
  	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a
  
  	stim::complex<double> h_ka, dh_ka;
  	stim::complex<double> numerator, denominator;
  	stim::complex<double> i(0, 1);
  	for(size_t l = 0; l <= Nl; l++){
  		h_ka.r = j_ka[l];
  		h_ka.i = y_ka[l];
  		dh_ka.r = dj_ka[l];
  		dh_ka.i = dy_ka[l];
  
  		numerator = j_ka[l] * dh_ka - dj_ka[l] * h_ka;
  		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
  		A[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
  	}
dd5aab2f   David Mayerich   fixed errors in s...
86
87
  	//free memory
  	free(j_ka);	free(y_ka);	free(dj_ka); free(dy_ka); free(j_kna); free(y_kna); free(dj_kna); free(dy_kna);
9339fbad   David Mayerich   implementing mie ...
88
89
  }
  
31262e83   David Mayerich   GPU implementatio...
90
  #define LOCAL_NL	16
9339fbad   David Mayerich   implementing mie ...
91
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
92
  __global__ void cuda_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T r_min, T dr, size_t N_hB, int Nl){
31262e83   David Mayerich   GPU implementatio...
93
  	extern __shared__ stim::complex<T> shared_hB[];		//declare the list of waves in shared memory
9339fbad   David Mayerich   implementing mie ...
94
95
  
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
31262e83   David Mayerich   GPU implementatio...
96
  	if(i >= N) return;													//exit if this thread is outside the array
9339fbad   David Mayerich   implementing mie ...
97
98
99
100
101
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  	
31262e83   David Mayerich   GPU implementatio...
102
103
  	T r = p.len();														//calculate the distance from the sphere
  	if(r < a) return;													//exit if the point is inside the sphere (we only calculate the internal field)
8309b07a   David Mayerich   fixed some vec3 e...
104
  	T fij = (r - r_min)/dr;											//FP index into the spherical bessel LUT
31262e83   David Mayerich   GPU implementatio...
105
106
  	size_t ij = (size_t) fij;											//convert to an integral index
  	T alpha = fij - ij;													//calculate the fractional portion of the index
8309b07a   David Mayerich   fixed some vec3 e...
107
108
  	size_t n0j = ij * (Nl + 1);												//start of the first entry in the LUT
  	size_t n1j = (ij+1) * (Nl + 1);											//start of the second entry in the LUT
9339fbad   David Mayerich   implementing mie ...
109
110
  
  	T cos_phi;	
31262e83   David Mayerich   GPU implementatio...
111
112
113
  	T Pl_2, Pl_1, Pl;														//declare registers to store the previous two Legendre polynomials
  	
  	stim::complex<T> hBl;
9339fbad   David Mayerich   implementing mie ...
114
115
  	stim::complex<T> Ei = 0;											//create a register to store the result
  	int l;
31262e83   David Mayerich   GPU implementatio...
116
  
8309b07a   David Mayerich   fixed some vec3 e...
117
118
  	stim::complex<T> hlBl[LOCAL_NL+1];									//the first LOCAL_NL components are stored in registers for speed
  	int shared_start = threadIdx.x * (Nl - LOCAL_NL);					//wrap up some operations so that they aren't done in the main loops
31262e83   David Mayerich   GPU implementatio...
119
  
8309b07a   David Mayerich   fixed some vec3 e...
120
  	#pragma unroll LOCAL_NL+1											//copy the first LOCAL_NL+1 h_l * B_l components to registers
31262e83   David Mayerich   GPU implementatio...
121
122
123
  	for(l = 0; l <= LOCAL_NL; l++)
  		hlBl[l] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
  	
8309b07a   David Mayerich   fixed some vec3 e...
124
  	for(l = LOCAL_NL+1; l <= Nl; l++)									//copy any additional h_l * B_l components to shared memory
31262e83   David Mayerich   GPU implementatio...
125
126
  		shared_hB[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
  
8309b07a   David Mayerich   fixed some vec3 e...
127
  	for(size_t w = 0; w < nW; w++){										//for each plane wave
9339fbad   David Mayerich   implementing mie ...
128
  		cos_phi = p.norm().dot(W[w].kvec().norm());						//calculate the cosine of the angle between the k vector and the direction from the sphere
8309b07a   David Mayerich   fixed some vec3 e...
129
  		Pl_2 = 1;														//the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
31262e83   David Mayerich   GPU implementatio...
130
  		Pl_1 = cos_phi;
8309b07a   David Mayerich   fixed some vec3 e...
131
  		Ei += W[w].E() * hlBl[0] * Pl_2;								//unroll the first two orders using the initial steps of the Legendre recursive relation
31262e83   David Mayerich   GPU implementatio...
132
133
  		Ei += W[w].E() * hlBl[1] * Pl_1;		
  
8309b07a   David Mayerich   fixed some vec3 e...
134
  		#pragma unroll LOCAL_NL-1										//unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
31262e83   David Mayerich   GPU implementatio...
135
  		for(l = 2; l <= LOCAL_NL; l++){
8309b07a   David Mayerich   fixed some vec3 e...
136
137
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);	//calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
  			Ei += W[w].E() * hlBl[l] * Pl;								//calculate and sum the current field order
31262e83   David Mayerich   GPU implementatio...
138
  			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
9339fbad   David Mayerich   implementing mie ...
139
  			Pl_1 = Pl;
31262e83   David Mayerich   GPU implementatio...
140
  		}
9339fbad   David Mayerich   implementing mie ...
141
  
8309b07a   David Mayerich   fixed some vec3 e...
142
143
144
145
146
  		for(l = LOCAL_NL+1; l <= Nl; l++){											//do the same as above, except for any additional orders that are stored in shared memory (not registers)
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);				//again, this is where most computation in the kernel occurs
  			Ei += W[w].E() * shared_hB[shared_start + l - LOCAL_NL - 1] * Pl;
  			Pl_2 = Pl_1;															//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;			
9339fbad   David Mayerich   implementing mie ...
147
  		}
9339fbad   David Mayerich   implementing mie ...
148
  	}
31262e83   David Mayerich   GPU implementatio...
149
  	E[i] += Ei;															//copy the result to device memory
9339fbad   David Mayerich   implementing mie ...
150
151
152
  }
  
  template<typename T>
31262e83   David Mayerich   GPU implementatio...
153
154
155
  void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T kr_min, T dkr, size_t N_hB, size_t Nl){
  	
  	size_t max_shared_mem = stim::sharedMemPerBlock();	
8309b07a   David Mayerich   fixed some vec3 e...
156
  	size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
4252d827   David Mayerich   ivote3 fixes and ...
157
158
  	//std::cout<<"hl*Bl array size:  "<<hBl_array<<std::endl;
  	//std::cout<<"shared memory:     "<<max_shared_mem<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
159
  	int threads = (int)((max_shared_mem / hBl_array) / 32 * 32);
4252d827   David Mayerich   ivote3 fixes and ...
160
  	//std::cout<<"threads per block: "<<threads<<std::endl;
31262e83   David Mayerich   GPU implementatio...
161
162
163
164
165
  	dim3 blocks((unsigned)(N / threads + 1));										//calculate the optimal number of blocks
  
  	size_t shared_mem;
  	if(Nl <= LOCAL_NL) shared_mem = 0;
  	else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL);				//amount of shared memory to allocate
4252d827   David Mayerich   ivote3 fixes and ...
166
  	//std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
31262e83   David Mayerich   GPU implementatio...
167
  	cuda_scalar_mie_scatter<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, hB, kr_min, dkr, N_hB, (int)Nl);	//call the kernel
31262e83   David Mayerich   GPU implementatio...
168
169
170
171
172
173
174
175
176
177
178
179
180
  }
  
  template<typename T>
  __global__ void cuda_dist(T* r, T* x, T* y, T* z, size_t N){
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
  	if(i >= N) return;													//exit if this thread is outside the array
  
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  
  	r[i] = p.len();
9339fbad   David Mayerich   implementing mie ...
181
  }
9339fbad   David Mayerich   implementing mie ...
182
  template<typename T>
4252d827   David Mayerich   ivote3 fixes and ...
183
184
  void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, T r_spacing = 0.1){
  	
9339fbad   David Mayerich   implementing mie ...
185
186
187
  	//calculate the necessary number of orders required to represent the scattered field
  	T k = W[0].kmag();
  
31262e83   David Mayerich   GPU implementatio...
188
189
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
4252d827   David Mayerich   ivote3 fixes and ...
190
  	//std::cout<<"Nl: "<<Nl<<std::endl;
9339fbad   David Mayerich   implementing mie ...
191
192
193
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
4252d827   David Mayerich   ivote3 fixes and ...
194
195
  	B_coefficients(B, a, k, n, Nl);	
  	
9339fbad   David Mayerich   implementing mie ...
196
197
198
199
200
  	//	PLANE WAVES
  	stim::scalarwave<T>* dev_W;																//allocate space and copy plane waves
  	HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
  	HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
  
9339fbad   David Mayerich   implementing mie ...
201
  	// BESSEL FUNCTION LOOK-UP TABLE
31262e83   David Mayerich   GPU implementatio...
202
203
204
205
206
207
  	//calculate the distance from the sphere center
  	T* dev_r;
  	HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
  		
  	int threads = stim::maxThreadsPerBlock();
  	dim3 blocks((unsigned)(N / threads + 1));
4252d827   David Mayerich   ivote3 fixes and ...
208
  	cuda_dist<T> <<< blocks, threads >>>(dev_r, x, y, z, N);
31262e83   David Mayerich   GPU implementatio...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  
  	//Find the minimum and maximum values of r
      cublasStatus_t stat;
      cublasHandle_t handle;
  
  	stat = cublasCreate(&handle);							//create a cuBLAS handle
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS initialization failed\n");
  		exit(1);
  	}
  
  	int i_min, i_max;
  	stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate minimum r value.\n");
  		exit(1);
  	}
  	stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate maximum r value.\n");
  		exit(1);
  	}
  
8309b07a   David Mayerich   fixed some vec3 e...
232
233
  	i_min--;				//cuBLAS uses 1-based indexing for Fortran compatibility
  	i_max--;
31262e83   David Mayerich   GPU implementatio...
234
235
236
237
  	T r_min, r_max;											//allocate space to store the minimum and maximum values
  	HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
  	HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
  
8309b07a   David Mayerich   fixed some vec3 e...
238
  	r_min = max(r_min, a);									//if the radius of the sphere is larger than r_min, change r_min to a (the scattered field doesn't exist inside the sphere)
31262e83   David Mayerich   GPU implementatio...
239
  
9339fbad   David Mayerich   implementing mie ...
240
  	//size_t Nlut_j = (size_t)((r_max - r_min) / r_spacing + 1);			//number of values in the look-up table based on the user-specified spacing along r
31262e83   David Mayerich   GPU implementatio...
241
  	size_t N_hB_lut = (size_t)((r_max - r_min) / r_spacing + 1);
9339fbad   David Mayerich   implementing mie ...
242
  
8309b07a   David Mayerich   fixed some vec3 e...
243
244
  	//T kr_min = k * r_min;
  	//T kr_max = k * r_max;
9339fbad   David Mayerich   implementing mie ...
245
246
247
248
249
250
251
252
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	double* jv = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* yv = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* djv= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) );
  
31262e83   David Mayerich   GPU implementatio...
253
254
  	size_t hB_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_hB_lut;
  	stim::complex<T>* hB_lut = (stim::complex<T>*) malloc(hB_bytes);													//pointer to the look-up table
8309b07a   David Mayerich   fixed some vec3 e...
255
  	T dr = (r_max - r_min) / (N_hB_lut-1);												//distance between values in the LUT
4252d827   David Mayerich   ivote3 fixes and ...
256
  	//std::cout<<"LUT jl bytes:  "<<hB_bytes<<std::endl;
31262e83   David Mayerich   GPU implementatio...
257
  	stim::complex<T> hl;
8309b07a   David Mayerich   fixed some vec3 e...
258
259
  	for(size_t ri = 0; ri < N_hB_lut; ri++){													//for each value in the LUT
  		stim::bessjyv_sph<double>(Nl, k * (r_min + ri * dr), vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
9339fbad   David Mayerich   implementing mie ...
260
  		for(size_t l = 0; l <= Nl; l++){													//for each order
31262e83   David Mayerich   GPU implementatio...
261
262
263
  			hl.r = (T)jv[l];
  			hl.i = (T)yv[l];
  
8309b07a   David Mayerich   fixed some vec3 e...
264
265
  			hB_lut[ri * (Nl + 1) + l] = hl * B[l];										//store the bessel function result
  			//std::cout<<hB_lut[ri * (Nl + 1) + l]<<std::endl;
9339fbad   David Mayerich   implementing mie ...
266
267
  		}
  	}
4252d827   David Mayerich   ivote3 fixes and ...
268
269
270
  	//T* real_lut = (T*) malloc(hB_bytes/2);
  	//stim::real(real_lut, hB_lut, N_hB_lut);
  	//stim::cpu2image<T>(real_lut, "hankel_B.bmp", Nl+1, N_hB_lut, stim::cmBrewer);
9339fbad   David Mayerich   implementing mie ...
271
272
  
  	//Allocate device memory and copy everything to the GPU
31262e83   David Mayerich   GPU implementatio...
273
274
275
  	stim::complex<T>* dev_hB_lut;
  	HANDLE_ERROR( cudaMalloc(&dev_hB_lut, hB_bytes) );
  	HANDLE_ERROR( cudaMemcpy(dev_hB_lut, hB_lut, hB_bytes, cudaMemcpyHostToDevice) );
9339fbad   David Mayerich   implementing mie ...
276
  
4252d827   David Mayerich   ivote3 fixes and ...
277
  	gpu_scalar_mie_scatter<T>(E, N, x, y, z, dev_W, W.size(), a, n, dev_hB_lut, r_min, dr, N_hB_lut, Nl);
9339fbad   David Mayerich   implementing mie ...
278
  
4252d827   David Mayerich   ivote3 fixes and ...
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
  	cudaMemcpy(E, E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost);			//copy the field from device memory
  }
  /// Calculate the scalar Mie solution for the scattered field produced by a single plane wave
  
  /// @param E is a pointer to the destination field values
  /// @param N is the number of points used to calculate the field
  /// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
  /// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
  /// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
  /// @param W is an array of planewaves that will be scattered
  /// @param a is the radius of the sphere
  /// @param n is the complex refractive index of the sphere
  template<typename T>
  void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, T r_spacing = 0.1){
  	
  
  #ifdef CUDA_FOUND
  	stim::complex<T>* dev_E;										//allocate space for the field
  	cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
  	cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
  	//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>));				//set the field to zero (necessary because a sum is used)
  
  	//	COORDINATES
  	T* dev_x = NULL;												//allocate space and copy the X coordinate (if specified)
  	if(x != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_y = NULL;												//allocate space and copy the Y coordinate (if specified)
  	if(y != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_z = NULL;												//allocate space and copy the Z coordinate (if specified)
  	if(z != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  
  	gpu_scalar_mie_scatter(dev_E, N, dev_x, dev_y, dev_z, W, a, n, r_spacing);
9339fbad   David Mayerich   implementing mie ...
319
320
321
322
323
324
325
  
  	if(x != NULL) cudaFree(dev_x);														//free everything
  	if(y != NULL) cudaFree(dev_y);
  	if(z != NULL) cudaFree(dev_z);
  	cudaFree(dev_E);
  #else
  	
4252d827   David Mayerich   ivote3 fixes and ...
326
327
328
329
330
331
332
333
334
335
  	//calculate the necessary number of orders required to represent the scattered field
  	T k = W[0].kmag();
  
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
  	//std::cout<<"Nl: "<<Nl<<std::endl;
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
  	B_coefficients(B, a, k, n, Nl);
9339fbad   David Mayerich   implementing mie ...
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
  
  	//allocate space to store the bessel function call results
  	double vm;										
  	double* j_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* y_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dj_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dy_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
  
  	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
  
  	T r, kr, cos_phi;
  	stim::complex<T> h;
  	for(size_t i = 0; i < N; i++){
  		stim::vec3<T> p;															//declare a 3D point
  	
  		(x == NULL) ? p[0] = 0 : p[0] = x[i];										// test for NULL values and set positions
  		(y == NULL) ? p[1] = 0 : p[1] = y[i];
  		(z == NULL) ? p[2] = 0 : p[2] = z[i];
  		r = p.len();
  		if(r >= a){
  			for(size_t w = 0; w < W.size(); w++){
  				kr = p.len() * W[w].kmag();											//calculate k*r
  				stim::bessjyv_sph<double>(Nl, kr, vm, j_kr, y_kr, dj_kr, dy_kr);
  				cos_phi = p.norm().dot(W[w].kvec().norm());							//calculate the cosine of the angle from the propagating direction
  				stim::legendre<T>(Nl, cos_phi, P);
  
  				for(size_t l = 0; l <= Nl; l++){
  					h.r = j_kr[l];
  					h.i = y_kr[l];
  					E[i] += W[w].E() * B[l] * h * P[l];
  				}
  			}
  		}
  	}
  #endif
  }
  
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
374
  void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, T r_spacing = 0.1){
9339fbad   David Mayerich   implementing mie ...
375
  	std::vector< stim::scalarwave<T> > W(1, w);
8309b07a   David Mayerich   fixed some vec3 e...
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  	cpu_scalar_mie_scatter(E, N, x, y, z, W, a, n, r_spacing);
  }
  
  template<typename T>
  __global__ void cuda_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, int Nl){
  	extern __shared__ stim::complex<T> shared_jA[];		//declare the list of waves in shared memory
  
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
  	if(i >= N) return;													//exit if this thread is outside the array
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  	
  	T r = p.len();														//calculate the distance from the sphere
963d0676   David Mayerich   bug fixes related...
391
  	if(r >= a) return;													//exit if the point is inside the sphere (we only calculate the internal field)
8309b07a   David Mayerich   fixed some vec3 e...
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
  	T fij = (r - r_min)/dr;											//FP index into the spherical bessel LUT
  	size_t ij = (size_t) fij;											//convert to an integral index
  	T alpha = fij - ij;													//calculate the fractional portion of the index
  	size_t n0j = ij * (Nl + 1);												//start of the first entry in the LUT
  	size_t n1j = (ij+1) * (Nl + 1);											//start of the second entry in the LUT
  
  	T cos_phi;	
  	T Pl_2, Pl_1, Pl;														//declare registers to store the previous two Legendre polynomials
  	
  	stim::complex<T> jAl;
  	stim::complex<T> Ei = 0;											//create a register to store the result
  	int l;
  
  	stim::complex<T> jlAl[LOCAL_NL+1];									//the first LOCAL_NL components are stored in registers for speed
  	int shared_start = threadIdx.x * (Nl - LOCAL_NL);					//wrap up some operations so that they aren't done in the main loops
  
  	#pragma unroll LOCAL_NL+1											//copy the first LOCAL_NL+1 h_l * B_l components to registers
  	for(l = 0; l <= LOCAL_NL; l++)
  		jlAl[l] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
  	
  	for(l = LOCAL_NL+1; l <= Nl; l++)									//copy any additional h_l * B_l components to shared memory
  		shared_jA[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
  
  	for(size_t w = 0; w < nW; w++){										//for each plane wave
  		if(r == 0) cos_phi = 0;
  		else
  			cos_phi = p.norm().dot(W[w].kvec().norm());						//calculate the cosine of the angle between the k vector and the direction from the sphere
  		Pl_2 = 1;														//the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
  		Pl_1 = cos_phi;
  		Ei += W[w].E() * jlAl[0] * Pl_2;								//unroll the first two orders using the initial steps of the Legendre recursive relation
  		Ei += W[w].E() * jlAl[1] * Pl_1;		
  
  		#pragma unroll LOCAL_NL-1										//unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
  		for(l = 2; l <= LOCAL_NL; l++){
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);	//calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
  			Ei += W[w].E() * jlAl[l] * Pl;								//calculate and sum the current field order
  			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;
  		}
  
  		for(l = LOCAL_NL+1; l <= Nl; l++){											//do the same as above, except for any additional orders that are stored in shared memory (not registers)
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);				//again, this is where most computation in the kernel occurs
  			Ei += W[w].E() * shared_jA[shared_start + l - LOCAL_NL - 1] * Pl;
  			Pl_2 = Pl_1;															//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;			
  		}
  	}
  	E[i] = Ei;															//copy the result to device memory
  }
  
  template<typename T>
  void gpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, size_t Nl){
  	
  	size_t max_shared_mem = stim::sharedMemPerBlock();	
  	size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
4252d827   David Mayerich   ivote3 fixes and ...
447
448
  	//std::cout<<"hl*Bl array size:  "<<hBl_array<<std::endl;
  	//std::cout<<"shared memory:     "<<max_shared_mem<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
449
  	int threads = (int)((max_shared_mem / hBl_array) / 32 * 32);
4252d827   David Mayerich   ivote3 fixes and ...
450
  	//std::cout<<"threads per block: "<<threads<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
451
452
453
454
455
  	dim3 blocks((unsigned)(N / threads + 1));										//calculate the optimal number of blocks
  
  	size_t shared_mem;
  	if(Nl <= LOCAL_NL) shared_mem = 0;
  	else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL);				//amount of shared memory to allocate
4252d827   David Mayerich   ivote3 fixes and ...
456
  	//std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
457
  	cuda_scalar_mie_internal<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, jA, r_min, dr, N_jA, (int)Nl);	//call the kernel
9339fbad   David Mayerich   implementing mie ...
458
459
460
461
462
463
464
465
466
467
468
469
470
  }
  
  /// Calculate the scalar Mie solution for the internal field produced by a single plane wave scattered by a sphere
  
  /// @param E is a pointer to the destination field values
  /// @param N is the number of points used to calculate the field
  /// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
  /// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
  /// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
  /// @param w is a planewave that will be scattered
  /// @param a is the radius of the sphere
  /// @param n is the complex refractive index of the sphere
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
471
472
  void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector< stim::scalarwave<T> > W, T a, stim::complex<T> n, T r_spacing = 0.1){
  //calculate the necessary number of orders required to represent the scattered field
9339fbad   David Mayerich   implementing mie ...
473
474
  	T k = W[0].kmag();
  
8309b07a   David Mayerich   fixed some vec3 e...
475
476
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
4252d827   David Mayerich   ivote3 fixes and ...
477
  	//std::cout<<"Nl: "<<Nl<<std::endl;
9339fbad   David Mayerich   implementing mie ...
478
479
480
481
482
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* A = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
  	A_coefficients(A, a, k, n, Nl);
  
8309b07a   David Mayerich   fixed some vec3 e...
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
  #ifdef CUDA_FOUND
  	stim::complex<T>* dev_E;										//allocate space for the field
  	cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
  	cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
  	//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>));				//set the field to zero (necessary because a sum is used)
  
  	//	COORDINATES
  	T* dev_x = NULL;												//allocate space and copy the X coordinate (if specified)
  	if(x != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_y = NULL;												//allocate space and copy the Y coordinate (if specified)
  	if(y != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_z = NULL;												//allocate space and copy the Z coordinate (if specified)
  	if(z != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  
  	//	PLANE WAVES
  	stim::scalarwave<T>* dev_W;																//allocate space and copy plane waves
  	HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
  	HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
  
  	// BESSEL FUNCTION LOOK-UP TABLE
  	//calculate the distance from the sphere center
  	T* dev_r;
  	HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
  		
  	int threads = stim::maxThreadsPerBlock();
  	dim3 blocks((unsigned)(N / threads + 1));
  	cuda_dist<T> <<< blocks, threads >>>(dev_r, dev_x, dev_y, dev_z, N);
  
  	//Find the minimum and maximum values of r
      cublasStatus_t stat;
      cublasHandle_t handle;
  
  	stat = cublasCreate(&handle);							//create a cuBLAS handle
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS initialization failed\n");
  		exit(1);
  	}
  
  	int i_min, i_max;
  	stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate minimum r value.\n");
  		exit(1);
  	}
  	stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate maximum r value.\n");
  		exit(1);
  	}
  
  	i_min--;				//cuBLAS uses 1-based indexing for Fortran compatibility
  	i_max--;
  	T r_min, r_max;											//allocate space to store the minimum and maximum values
  	HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
  	HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
  
  	r_max = min(r_max, a);		//the internal field doesn't exist outside of the sphere
  
  	size_t N_jA_lut = (size_t)((r_max - r_min) / r_spacing + 1);
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	stim::complex<double>* jv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* yv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* djv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dyv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	size_t jA_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_jA_lut;
  	stim::complex<T>* jA_lut = (stim::complex<T>*) malloc(jA_bytes);													//pointer to the look-up table
  	T dr = (r_max - r_min) / (N_jA_lut-1);												//distance between values in the LUT
4252d827   David Mayerich   ivote3 fixes and ...
562
  	//std::cout<<"LUT jl bytes:  "<<jA_bytes<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
  	stim::complex<T> hl;
  	stim::complex<double> nd = (stim::complex<double>)n;
  	for(size_t ri = 0; ri < N_jA_lut; ri++){													//for each value in the LUT
  		stim::cbessjyva_sph<double>(Nl, nd * k * (r_min + ri * dr), vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
  		for(size_t l = 0; l <= Nl; l++){													//for each order
  			jA_lut[ri * (Nl + 1) + l] = (stim::complex<T>)(jv[l] * (stim::complex<double>)A[l]);										//store the bessel function result
  		}
  	}
  
  	//Allocate device memory and copy everything to the GPU
  	stim::complex<T>* dev_jA_lut;
  	HANDLE_ERROR( cudaMalloc(&dev_jA_lut, jA_bytes) );
  	HANDLE_ERROR( cudaMemcpy(dev_jA_lut, jA_lut, jA_bytes, cudaMemcpyHostToDevice) );
  
  	gpu_scalar_mie_internal<T>(dev_E, N, dev_x, dev_y, dev_z, dev_W, W.size(), a, n, dev_jA_lut, r_min, dr, N_jA_lut, Nl);
  
  	cudaMemcpy(E, dev_E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost);			//copy the field from device memory
  
  	if(x != NULL) cudaFree(dev_x);														//free everything
  	if(y != NULL) cudaFree(dev_y);
  	if(z != NULL) cudaFree(dev_z);
4252d827   David Mayerich   ivote3 fixes and ...
584
585
586
587
  	HANDLE_ERROR( cudaFree(dev_jA_lut) );
  	HANDLE_ERROR( cudaFree(dev_E) );
  	HANDLE_ERROR( cudaFree(dev_W) );
  	HANDLE_ERROR( cudaFree(dev_r) );
8309b07a   David Mayerich   fixed some vec3 e...
588
589
590
  	cudaFree(dev_E);
  #else
  
9339fbad   David Mayerich   implementing mie ...
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
  	//allocate space to store the bessel function call results
  	double vm;										
  	stim::complex<double>* j_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
  
  	T r, cos_phi;
  	stim::complex<double> knr;
  	stim::complex<T> h;
  	for(size_t i = 0; i < N; i++){
  		stim::vec3<T> p;									//declare a 3D point
  	
  		(x == NULL) ? p[0] = 0 : p[0] = x[i];				// test for NULL values and set positions
  		(y == NULL) ? p[1] = 0 : p[1] = y[i];
  		(z == NULL) ? p[2] = 0 : p[2] = z[i];
  		r = p.len();
  		if(r < a){
  			E[i] = 0;
  			for(size_t w = 0; w < W.size(); w++){
  				knr = (stim::complex<double>)n * p.len() * W[w].kmag();							//calculate k*n*r
  
  				stim::cbessjyva_sph<double>(Nl, knr, vm, j_knr, y_knr, dj_knr, dy_knr);
  				if(r == 0)
  					cos_phi = 0;
  				else
  					cos_phi = p.norm().dot(W[w].kvec().norm());				//calculate the cosine of the angle from the propagating direction
  				stim::legendre<T>(Nl, cos_phi, P);
  								
  				for(size_t l = 0; l <= Nl; l++){
  					E[i] += W[w].E() * A[l] * (stim::complex<T>)j_knr[l] * P[l];
  				}
  			}
  		}
  	}
8309b07a   David Mayerich   fixed some vec3 e...
628
  #endif
9339fbad   David Mayerich   implementing mie ...
629
630
631
  }
  
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
632
  void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, T r_spacing = 0.1){
9339fbad   David Mayerich   implementing mie ...
633
  	std::vector< stim::scalarwave<T> > W(1, w);
8309b07a   David Mayerich   fixed some vec3 e...
634
  	cpu_scalar_mie_internal(E, N, x, y, z, W, a, n, r_spacing);
9339fbad   David Mayerich   implementing mie ...
635
636
  }
  
963d0676   David Mayerich   bug fixes related...
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
  
  /// Class stim::scalarmie represents a scalar Mie scattering model that can be used to calculate the fields produced by a scattering sphere.
  template<typename T>
  class scalarmie
  {
  private:
  	T radius;					//radius of the scattering sphere
  	stim::complex<T> n;			//refractive index of the scattering sphere
  	
  public:
  
  	scalarmie(T r, stim::complex<T> ri){
  		radius = r;
  		n = ri;
  	}
  
4252d827   David Mayerich   ivote3 fixes and ...
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
  	void sum_scat(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int samples = 1000){
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves
  		stim::cpu_scalar_mie_scatter<float>(E.ptr(), E.size(), X, Y, Z, wave_array, radius, n, E.spacing());
  	}
  
  	void sum_intern(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int samples = 1000){
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves
  		stim::cpu_scalar_mie_internal<float>(E.ptr(), E.size(), X, Y, Z, wave_array, radius, n, E.spacing());
  	}
  
  	void eval(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int order = 500, int samples = 1000){
  		b.eval(E, X, Y, Z, order);													//evaluate the incident field using a plane wave expansion
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves		
  		sum_scat(E, X, Y, Z, b, samples);
  		sum_intern(E, X, Y, Z, b, samples);
  	}
  
963d0676   David Mayerich   bug fixes related...
670
671
  	void eval(stim::scalarfield<T>& E, stim::scalarbeam<T> b, int order = 500, int samples = 1000){
  
4252d827   David Mayerich   ivote3 fixes and ...
672
  		/*size_t array_size = E.grid_bytes();											//calculate the number of bytes in the scalar grid
963d0676   David Mayerich   bug fixes related...
673
674
675
676
  		float* X = (float*) malloc( array_size );									//allocate space for the coordinate meshes
  		float* Y = (float*) malloc( array_size );
  		float* Z = (float*) malloc( array_size );
  		E.meshgrid(X, Y, Z, stim::CPUmem);											//calculate the coordinate meshes
4252d827   David Mayerich   ivote3 fixes and ...
677
678
679
  		*/
  		E.meshgrid();
  		b.eval(E, order);
963d0676   David Mayerich   bug fixes related...
680
681
  
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves
4252d827   David Mayerich   ivote3 fixes and ...
682
683
684
685
686
687
688
689
690
  
  		if(E.gpu()){
  			stim::gpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
  		}
  		else{
  			stim::cpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
  			stim::cpu_scalar_mie_internal<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
  		}
  		//eval(E, X, Y, Z, b, order, samples);										//evaluate the field		
963d0676   David Mayerich   bug fixes related...
691
692
693
694
695
  	}
  
  };			//end stim::scalarmie
  
  }			//end namespace stim
9339fbad   David Mayerich   implementing mie ...
696
697
  
  #endif