Blame view

math/realfield.cuh 7.55 KB
821513c8   David Mayerich   ERROR plane wave ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  #ifndef	RTS_REALFIELD_H

  #define RTS_REALFIELD_H

  

  #include "../visualization/colormap.h"
  #include "../envi/envi.h"
  #include "../math/quad.h"
  #include "../cuda/devices.h"
  #include "cublas_v2.h"
  #include <cuda_runtime.h>

  

  ///Compute a Gaussian function in 3D (mostly for testing)
  /*template<typename T>
  __global__ void gpu_gaussian(T* dest, unsigned int r0, unsigned int r1, T mean, T std, rts::quad<T> shape)
  {
  	int iu = blockIdx.x * blockDim.x + threadIdx.x;
  	int iv = blockIdx.y * blockDim.y + threadIdx.y;
  
  	//make sure that the thread indices are in-bounds
  	if(iu >= r0 || iv >= r1) return;
  
  	//compute the index into the field
  	int i = iv*r0 + iu;
  
  	T u = (T)iu / (T)r0;
  	T v = (T)iv / (T)r1;
  
  	rts::vec<T> p = shape(u, v);
  
  	T fx = (T)1.0 / (std * (T)sqrt(2 * 3.14159f) ) * exp( - pow(p[0] - mean, 2) / (2 * std*std) );
  	T fy = (T)1.0 / (std * (T)sqrt(2 * 3.14159f) ) * exp( - pow(p[1] - mean, 2) / (2 * std*std) );
  	T fz = (T)1.0 / (std * (T)sqrt(2 * 3.14159f) ) * exp( - pow(p[2] - mean, 2) / (2 * std*std) );
  
  	dest[i] = fx * fy * fz;
  }*/

  

  namespace rts{

  

  template<typename P, unsigned int N = 1, bool positive = false>

  class realfield{

  

  	P* X[N];		//an array of N gpu pointers for each field component
  	int R[2];		//resolution of the slice
  	quad<P> shape;

  

  	void process_filename(std::string name, std::string &prefix, std::string &postfix, 

                            std::string &ext, unsigned int &digits)

      {

          std::stringstream ss(name);

          std::string item;

          std::vector<std::string> elems;

          while(std::getline(ss, item, '.'))      //split the string at the '.' character (filename and extension)

          {

              elems.push_back(item);

          }

          

          prefix = elems[0];                      //prefix contains the filename (with wildcard '?' characters)

          ext = elems[1];                         //file extension (ex. .bmp, .png)

          ext = std::string(".") + ext;           //add a period back into the extension

  

          size_t i0 = prefix.find_first_of("?");  //find the positions of the first and last wildcard ('?'')

          size_t i1 = prefix.find_last_of("?");

  

          postfix = prefix.substr(i1+1);

          prefix = prefix.substr(0, i0);

  

          digits = i1 - i0 + 1;                   //compute the number of wildcards

      }

  

  	void init()

  	{

  		for(unsigned int n=0; n<N; n++)
  			X[n] = NULL;

  	}

  	void destroy()

  	{

  		for(unsigned int n=0; n<N; n++)
  			if(X[n] != NULL)
  				HANDLE_ERROR(cudaFree(X[n]));

  	}

  

  public:

  	//field constructor

  	realfield()

  	{

  		R[0] = R[1] = 0;

  		init();

  		std::cout<<"realfield CONSTRUCTOR"<<std::endl;

  	}

  	realfield(unsigned int x, unsigned int y)
  	{
          //set the resolution
          R[0] = x;
          R[1] = y;
  		//allocate memory on the GPU
  		for(unsigned int n=0; n<N; n++)
  		{
  			HANDLE_ERROR(cudaMalloc( (void**)&X[n], sizeof(P) * R[0] * R[1] ));

  		}
  		shape = quad<P>(vec<P>(-1, -1, 0), vec<P>(-1, 1, 0), vec<P>(1, 1, 0));	//default geometry
  		clear();		//zero the field
  		std::cout<<"realfield CONSTRUCTOR"<<std::endl;
      }

  

  	~realfield()
      {
  		destroy();
  		std::cout<<"realfield DESTRUCTOR"<<std::endl;
      }

  

  	P* ptr(unsigned int n)

  	{

  		if(n < N)

  			return X[n];

  		else return NULL;

  	}

  

  	//set all components of the field to zero

  	void clear()
      {
  		for(unsigned int n=0; n<N; n++)
  			if(X[n] != NULL)
  				HANDLE_ERROR(cudaMemset(X[n], 0, sizeof(P) * R[0] * R[1]));
      }

  

  	void toImage(std::string filename, unsigned int n, P vmin, P vmax, rts::colormapType cmap = rts::cmBrewer)

      {

  		rts::gpu2image<P>(X[n], filename, R[0], R[1], vmin, vmax, cmap);

      }

  

  	void toImages(std::string filename, rts::colormapType cmap = rts::cmBrewer)

  	{

          std::string prefix, postfix, extension;

          unsigned int digits;

          process_filename(filename, prefix, postfix, extension, digits);      //process the filename for wild cards

  

          cublasStatus_t stat;

          cublasHandle_t handle;

  

          //create a CUBLAS handle

          stat = cublasCreate(&handle);

          if(stat != CUBLAS_STATUS_SUCCESS)

          {

              std::cout<<"CUBLAS Error: initialization failed"<<std::endl;

              exit(1);

          }

  

          int L = R[0] * R[1];    //compute the number of discrete points in a slice

          int result;             //result of the max operation

  

          P maxVal[N];            //array stores minimum and maximum values

          P maxAll = 0;           //largest value in the data set

  

          //compute the maximum value for each vector component

          for(int n=0; n<N; n++)

          {

              if(sizeof(P) == 4)

                  stat = cublasIsamax(handle, L, (const float*)X[n], 1, &result);

              else

                  stat = cublasIdamax(handle, L, (const double*)X[n], 1, &result);

  

              result -= 1;        //adjust for 1-based indexing

  

              if(stat != CUBLAS_STATUS_SUCCESS)   //if there was a GPU error, terminate

              {

                  std::cout<<"CUBLAS Error: failure finding maximum value."<<std::endl;

                  exit(1);

              }

  

              //retrieve the maximum value for this slice and store it in the maxVal array

              HANDLE_ERROR(cudaMemcpy(&maxVal[n], X[n] + result, sizeof(P), cudaMemcpyDeviceToHost));

              if(abs(maxVal[n]) > maxAll)          //if maxVal is larger, update the maxAll variable

                  maxAll = maxVal[n];

  

          }

          

          cublasDestroy(handle);  //destroy the CUBLAS handle

  

  		for(int n=0; n<N; n++)          //for each image

  		{

  			stringstream ss;            //assemble the file name

  			ss<<prefix<<std::setfill('0')<<std::setw(digits)<<n<<postfix<<extension;

  			std::cout<<ss.str()<<std::endl;

  			if(positive)                //if the image is positive

  				toImage(ss.str(), n, 0, maxAll, cmap);         //save the image using the global maximum

  			else

  				toImage(ss.str(), n, -abs(maxVal[n]), abs(maxVal[n]), cmap);   //save the image using the global maximum

  		}

  	}

  

  	//assignment operator
  	realfield & operator= (const realfield & rhs)
      {
          //de-allocate any existing GPU memory
          destroy();
  
          //copy the slice resolution
          R[0] = rhs.R[0];
          R[1] = rhs.R[1];
  
  		for(unsigned int n=0; n<N; n++)
  		{
  			//allocate the necessary memory
  			HANDLE_ERROR(cudaMalloc(&X[n], sizeof(P) * R[0] * R[1]));
  			//copy the slice
  			HANDLE_ERROR(cudaMemcpy(X[n], rhs.X[n], sizeof(P) * R[0] * R[1], cudaMemcpyDeviceToDevice));
  		}
          std::cout<<"Assignment operator."<<std::endl;
  
          return *this;
      }
  
  	///copy constructor
  	realfield(const realfield &rhs)
  	{
  		//first make a shallow copy
  		R[0] = rhs.R[0];
  		R[1] = rhs.R[1];
  
  		for(unsigned int n=0; n<N; n++)
  		{
  			//do we have to make a deep copy?
  			if(rhs.X[n] == NULL)
  				X[n] = NULL;		//no
  			else
  			{
  				//allocate the necessary memory
  				HANDLE_ERROR(cudaMalloc(&X[n], sizeof(P) * R[0] * R[1]));
  
  				//copy the slice
  				HANDLE_ERROR(cudaMemcpy(X[n], rhs.X[n], sizeof(P) * R[0] * R[1], cudaMemcpyDeviceToDevice));
  			}
  		}
  
  		std::cout<<"realfield COPY CONSTRUCTOR"<<std::endl;
  	}

  

  	/*void gaussian(P mean, P std, unsigned int n=0)	//creates a 3D gaussian using component n
  	{
  		int maxThreads = rts::maxThreadsPerBlock(); //compute the optimal block size
          int SQRT_BLOCK = (int)sqrt((float)maxThreads);
  		//create one thread for each detector pixel
  		dim3 dimBlock(SQRT_BLOCK, SQRT_BLOCK);
  		dim3 dimGrid((R[0] + SQRT_BLOCK -1)/SQRT_BLOCK, (R[1] + SQRT_BLOCK - 1)/SQRT_BLOCK);
  
  		gpu_gaussian<float> <<<dimGrid, dimBlock>>> (X[n], R[0], R[1], mean, std, shape);
  	}*/

  

  

  

  };

  

  

  }	//end namespace rts

  

  

  #endif