Blame view

stim/optics_old/planewave.h 8.82 KB
8e4f8364   David Mayerich   started a new opt...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  #ifndef RTS_PLANEWAVE
  #define RTS_PLANEWAVE
  
  #include <string>
  #include <sstream>
  
  #include "../math/vector.h"
  #include "../math/quaternion.h"
  #include "../math/constants.h"
  #include "../math/plane.h"
  #include "../cuda/callable.h"
  
  /*Basic conversions used here (assuming a vacuum)
  	lambda =
  */
  
  namespace stim{
  	namespace optics{
  
  template<typename T>
  class planewave{
  
  protected:
  
  	vec<T> k;	//k = tau / lambda
  	vec< complex<T> > E0;		//amplitude
  	//T phi;
  
  	CUDA_CALLABLE planewave<T> bend(rts::vec<T> kn) const{
  
  		vec<T> kn_hat = kn.norm();				//normalize the new k
  		vec<T> k_hat = k.norm();				//normalize the current k
  
  		//std::cout<<"PLANE WAVE BENDING------------------"<<std::endl;
  		//std::cout<<"kn_hat: "<<kn_hat<<"     k_hat: "<<k_hat<<std::endl;
  
  		planewave<T> new_p;						//create a new plane wave
  
  		//if kn is equal to k or -k, handle the degenerate case
  		T k_dot_kn = k_hat.dot(kn_hat);
  
  		//if k . n < 0, then the bend is a reflection
  			//flip k_hat
  		if(k_dot_kn < 0) k_hat = -k_hat;
  
  		//std::cout<<"k dot kn: "<<k_dot_kn<<std::endl;
  
  		//std::cout<<"k_dot_kn: "<<k_dot_kn<<std::endl;
  		if(k_dot_kn == -1){
  			new_p.k = -k;
  			new_p.E0 = E0;
  			return new_p;
  		}
  		else if(k_dot_kn == 1){
  			new_p.k = k;
  			new_p.E0 = E0;
  			return new_p;
  		}
  
  		vec<T> r = k_hat.cross(kn_hat);			//compute the rotation vector
  
  		//std::cout<<"r: "<<r<<std::endl;
  
  		T theta = asin(r.len());				//compute the angle of the rotation about r
  
  		
  
  		//deal with a zero vector (both k and kn point in the same direction)
  		//if(theta == (T)0)
  		//{
  		//	new_p = *this;
  		//	return new_p;
  		//}
  
  		//create a quaternion to capture the rotation
  		quaternion<T> q;
  		q.CreateRotation(theta, r.norm());
  
  		//apply the rotation to E0
  		vec< complex<T> > E0n = q.toMatrix3() * E0;
  
  		new_p.k = kn_hat * kmag();
  		new_p.E0 = E0n;
  
  		return new_p;
  	}
  
  public:
  
  
  	///constructor: create a plane wave propagating along z, polarized along x
  	/*planewave(T lambda = (T)1)
  	{
  		k = rts::vec<T>(0, 0, 1) * (TAU/lambda);
  		E0 = rts::vec<T>(1, 0, 0);
  	}*/
  	///constructor: create a plane wave propagating along k, polarized along _E0, at frequency _omega
  	CUDA_CALLABLE planewave(vec<T> kvec = rts::vec<T>(0, 0, rtsTAU), 
  							vec< complex<T> > E = rts::vec<T>(1, 0, 0), T phase = 0)
  	{
  		//phi = phase;
  
  		k = kvec;
  		vec< complex<T> > k_hat = k.norm();
  
  		if(E.len() == 0)			//if the plane wave has an amplitude of 0
  			E0 = vec<T>(0);			//just return it
  		else{
  			vec< complex<T> > s = (k_hat.cross(E)).norm();		//compute an orthogonal side vector
  			vec< complex<T> > E_hat = (s.cross(k)).norm();	//compute a normalized E0 direction vector
  			E0 = E_hat * E_hat.dot(E);					//compute the projection of _E0 onto E0_hat
  		}
  
  		E0 = E0 * exp( complex<T>(0, phase) );
  	}
  
  	///multiplication operator: scale E0
      CUDA_CALLABLE planewave<T> & operator* (const T & rhs)
  	{
  		
  		E0 = E0 * rhs;
  		return *this;
  	}
  
  	CUDA_CALLABLE T lambda() const
  	{
  		return rtsTAU / k.len();
  	}
  
  	CUDA_CALLABLE T kmag() const
  	{
  		return k.len();
  	}
  
  	CUDA_CALLABLE vec< complex<T> > E(){
  		return E0;
  	}
  
  	CUDA_CALLABLE vec<T> kvec(){
  		return k;
  	}
  
  	/*CUDA_CALLABLE T phase(){
  		return phi;
  	}
  
  	CUDA_CALLABLE void phase(T p){
  		phi = p;
  	}*/
  
  	CUDA_CALLABLE vec< complex<T> > pos(vec<T> p = vec<T>(0, 0, 0)){
  		vec< complex<T> > result;
  
  		T kdp = k.dot(p);
  		complex<T> x = complex<T>(0, kdp);
  		complex<T> expx = exp(x);
  
  		result[0] = E0[0] * expx;
  		result[1] = E0[1] * expx;
  		result[2] = E0[2] * expx;
  
  		return result;
  	}
  
  	//scales k based on a transition from material ni to material nt
  	CUDA_CALLABLE planewave<T> n(T ni, T nt){
  		return planewave<T>(k * (nt / ni), E0);
  	}
  
  	CUDA_CALLABLE planewave<T> refract(rts::vec<T> kn) const
  	{
  		return bend(kn);
  	}
  
  	void scatter(rts::plane<T> P, T nr, planewave<T> &r, planewave<T> &t){
  
  		int facing = P.face(k);		//determine which direction the plane wave is coming in
  
  		//if(facing == 0)				//if the wave is tangent to the plane, return an identical wave
  		//	return *this;
  		//else 
  		if(facing == -1){		//if the wave hits the back of the plane, invert the plane and nr
  			P = P.flip();			//flip the plane
  			nr = 1/nr;				//invert the refractive index (now nr = n0/n1)
  		}
  
  		//use Snell's Law to calculate the transmitted angle
  		T cos_theta_i = k.norm().dot(-P.norm());				//compute the cosine of theta_i
  		T theta_i = acos(cos_theta_i);							//compute theta_i
  		T sin_theta_t = (1/nr) * sin(theta_i);						//compute the sine of theta_t using Snell's law
  		T theta_t = asin(sin_theta_t);							//compute the cosine of theta_t
  
  		bool tir = false;						//flag for total internal reflection
  		if(theta_t != theta_t){
  			tir = true;
  			theta_t = rtsPI / (T)2;
  		}
  
  		//handle the degenerate case where theta_i is 0 (the plane wave hits head-on)
  		if(theta_i == 0){
  			T rp = (1 - nr) / (1 + nr);		//compute the Fresnel coefficients
  			T tp = 2 / (1 + nr);
  			vec<T> kr = -k;
  			vec<T> kt = k * nr;			//set the k vectors for theta_i = 0
  			vec< complex<T> > Er = E0 * rp;		//compute the E vectors
  			vec< complex<T> > Et = E0 * tp;
  			T phase_t = P.p().dot(k - kt);	//compute the phase offset
  			T phase_r = P.p().dot(k - kr);
  			//std::cout<<"Degeneracy: Head-On"<<std::endl;
  			//std::cout<<"rs: "<<rp<<"  rp: "<<rp<<"  ts: "<<tp<<"  tp: "<<tp<<std::endl;
  			//std::cout<<"phase r: "<<phase_r<<"  phase t: "<<phase_t<<std::endl;
  
  			//create the plane waves
  			r = planewave<T>(kr, Er, phase_r);
  			t = planewave<T>(kt, Et, phase_t);
  
  			//std::cout<<"i + r: "<<pos()[0] + r.pos()[0]<<pos()[1] + r.pos()[1]<<pos()[2] + r.pos()[2]<<std::endl;
  			//std::cout<<"t:     "<<t.pos()[0]<<t.pos()[1]<<t.pos()[2]<<std::endl;
  			//std::cout<<"--------------------------------"<<std::endl;
  			return;
  		}
  
  
  		//compute the Fresnel coefficients
  		T rp, rs, tp, ts;
  		rp = tan(theta_t - theta_i) / tan(theta_t + theta_i);
  		rs = sin(theta_t - theta_i) / sin(theta_t + theta_i);
  		
  		if(tir){
  			tp = ts = 0;
  		}
  		else{
  			tp = ( 2 * sin(theta_t) * cos(theta_i) ) / ( sin(theta_t + theta_i) * cos(theta_t - theta_i) );
  			ts = ( 2 * sin(theta_t) * cos(theta_i) ) / sin(theta_t + theta_i);
  		}
  
  		//compute the coordinate space for the plane of incidence
  		vec<T> z_hat = -P.norm();
  		vec<T> y_hat = P.parallel(k).norm();
  		vec<T> x_hat = y_hat.cross(z_hat).norm();
  
  		//compute the k vectors for r and t
  		vec<T> kr, kt;
  		kr = ( y_hat * sin(theta_i) - z_hat * cos(theta_i) ) * kmag();
  		kt = ( y_hat * sin(theta_t) + z_hat * cos(theta_t) ) * kmag() * nr;
  
  		//compute the magnitude of the p- and s-polarized components of the incident E vector
  		complex<T> Ei_s = E0.dot(x_hat);
  		//int sgn = (0 < E0.dot(y_hat)) - (E0.dot(y_hat) < 0);
  		int sgn = E0.dot(y_hat).sgn();
  		vec< complex<T> > cx_hat = x_hat;
  		complex<T> Ei_p = ( E0 - cx_hat * Ei_s ).len() * sgn;
  		//T Ei_p = ( E0 - x_hat * Ei_s ).len();
  		//compute the magnitude of the p- and s-polarized components of the reflected E vector
  		complex<T> Er_s = Ei_s * rs;
  		complex<T> Er_p = Ei_p * rp;
  		//compute the magnitude of the p- and s-polarized components of the transmitted E vector
  		complex<T> Et_s = Ei_s * ts;
  		complex<T> Et_p = Ei_p * tp;
  
  		//std::cout<<"E0: "<<E0<<std::endl;
  		//std::cout<<"E0 dot y_hat: "<<E0.dot(y_hat)<<std::endl;
  		//std::cout<<"theta i: "<<theta_i<<"  theta t: "<<theta_t<<std::endl;
  		//std::cout<<"x_hat: "<<x_hat<<"  y_hat: "<<y_hat<<"  z_hat: "<<z_hat<<std::endl;
  		//std::cout<<"Ei_s: "<<Ei_s<<"  Ei_p: "<<Ei_p<<"  Er_s: "<<Er_s<<"  Er_p: "<<Er_p<<"  Et_s: "<<Et_s<<"  Et_p: "<<Et_p<<std::endl;
  		//std::cout<<"rs: "<<rs<<"  rp: "<<rp<<"  ts: "<<ts<<"  tp: "<<tp<<std::endl;
  		
  
  		//compute the reflected E vector
  		vec< complex<T> > Er = vec< complex<T> >(y_hat * cos(theta_i) + z_hat * sin(theta_i)) * Er_p + cx_hat * Er_s;
  		//compute the transmitted E vector
  		vec< complex<T> > Et = vec< complex<T> >(y_hat * cos(theta_t) - z_hat * sin(theta_t)) * Et_p + cx_hat * Et_s;
  
  		T phase_t = P.p().dot(k - kt);
  		T phase_r = P.p().dot(k - kr);
  
  		//std::cout<<"phase r: "<<phase_r<<"  phase t: "<<phase_t<<std::endl;
  
  		//std::cout<<"phase: "<<phase<<std::endl;
  
  		//create the plane waves
  		r.k = kr;
  		r.E0 = Er * exp( complex<T>(0, phase_r) );
  		//r.phi = phase_r;
  
  		//t = bend(kt);
  		//t.k = t.k * nr;
  
  		t.k = kt;
  		t.E0 = Et * exp( complex<T>(0, phase_t) );
  		//t.phi = phase_t;
  		//std::cout<<"i: "<<str()<<std::endl;
  		//std::cout<<"r: "<<r.str()<<std::endl;
  		//std::cout<<"t: "<<t.str()<<std::endl;
  
  		//std::cout<<"i + r: "<<pos()[0] + r.pos()[0]<<pos()[1] + r.pos()[1]<<pos()[2] + r.pos()[2]<<std::endl;
  		//std::cout<<"t:     "<<t.pos()[0]<<t.pos()[1]<<t.pos()[2]<<std::endl;
  		//std::cout<<"--------------------------------"<<std::endl;
  
  	}
  
  	std::string str()
  	{
  		std::stringstream ss;
  		ss<<"Plane Wave:"<<std::endl;
  		ss<<"	"<<E0<<" e^i ( "<<k<<" . r )";
  		return ss.str();
  	}
  };					//end planewave class
  }					//end namespace optics
  }					//end namespace stim
  
  template <typename T>
  std::ostream& operator<<(std::ostream& os, rts::planewave<T> p)
  {
      os<<p.str();
      return os;
  }
  
  #endif