Blame view

stim/math/spharmonics.h 3.32 KB
487a9b49   David Mayerich   added the ability...
1
2
3
  #ifndef STIM_SPH_HARMONICS

  #define STIM_SPH_HARMONICS

  

cce7daf9   Pavel Govyadinov   added glObj.h to ...
4
  #include <stim/math/vector.h>

487a9b49   David Mayerich   added the ability...
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  #include <boost/math/special_functions/spherical_harmonic.hpp>

  #include <vector>

  

  #define PI 3.14159

  #define WIRE_SCALE 1.001

  namespace stim{

  

  template<class T>

  class spharmonics{

  

  protected:

  

  	std::vector<T> C;	//list of SH coefficients

  

  	unsigned int mcN;	//number of Monte-Carlo samples

  

  	//calculate the value of the SH basis function (l, m) at (theta, phi)

  		//here, theta = [0, PI], phi = [0, 2*PI]

  	double SH(int l, int m, double theta, double phi){

  		return boost::math::spherical_harmonic_r(l, m, phi, theta);

  	}

  

  	unsigned int coeff_1d(unsigned int l, int m){

  		return pow(l + 1, 2) - (l - m) - 1;

  	}

  

  	

  

  

  public:

  

  	void push(double c){

  		C.push_back(c);

  	}

  

  	void resize(unsigned int n){

  		C.resize(n);

  	}

  

  	void setc(unsigned int l, int m, T value){

  		unsigned int c = coeff_1d(l, m);

  		C[c] = value;

  	}

  

  	void setc(unsigned int c, T value){

  		C[c] = value;

  	}

  

  	/// Initialize Monte-Carlo sampling of a function using N spherical harmonics coefficients

  

  	/// @param N is the number of spherical harmonics coefficients used to represent the user function

  	void mcBegin(unsigned int coefficients){

  		C.resize(coefficients, 0);

  		mcN = 0;

  	}

  

  	void mcBegin(unsigned int l, int m){

  		unsigned int c = pow(l + 1, 2) - (l - m);

  		mcBegin(c);

  	}

  

  	void mcSample(double theta, double phi, double val){

  

  		int l, m;

  		double sh;

  

  		l = m = 0;

  		for(unsigned int i = 0; i < C.size(); i++){

  

  			sh = SH(l, m, theta, phi);

  			C[i] += sh * val;

  

  			m++;			//increment m

  

  			//if we're in a new tier, increment l and set m = -l

  			if(m > l){		

  				l++;

  				m = -l;

  			}

  		}	//end for all coefficients

  

  		//increment the number of samples

  		mcN++;

  

  	}	//end mcSample()

  

  	void mcEnd(){

  

  		//divide all coefficients by the number of samples

  		for(unsigned int i = 0; i < C.size(); i++)

  			C[i] /= mcN;

  	}

  

  	/// Generates a PDF describing the probability distribution of points on a spherical surface

  

  	/// @param sph_pts is a list of points in spherical coordinates (theta, phi) where theta = [0, 2pi] and phi = [0, pi]

  	/// @param l is the maximum degree of the spherical harmonic function

  	/// @param m is the maximum order

321ff17a   David Mayerich   Optimized the mat...
103
  	void pdf(std::vector<stim::vec<double> > sph_pts, unsigned int l, int m){

487a9b49   David Mayerich   added the ability...
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
  			

  		mcBegin( l, m );		//begin spherical harmonic sampling

  

  		unsigned int nP = sph_pts.size();

  

  		for(unsigned int p = 0; p < nP; p++){

  			mcSample(sph_pts[p][1], sph_pts[p][2], 1.0);

  		}

  

  		mcEnd();

  	}

  

  	std::string str(){

  

  		std::stringstream ss;

  

  		int l, m;

  		l = m = 0;

  		for(unsigned int i = 0; i < C.size(); i++){

  				

  			ss<<C[i]<<'\t';

  

  			m++;			//increment m

  

  			//if we're in a new tier, increment l and set m = -l

  			if(m > l){

  				l++;

  				m = -l;

  

  				ss<<std::endl;

  					

  			}

  		}

  

  		return ss.str();

  

  

  	}

  

  	/// Returns the value of the function at the coordinate (theta, phi)

  

  	/// @param theta = [0, 2pi]

  	/// @param phi = [0, pi]

  	double operator()(double theta, double phi){

  

  		double fx = 0;

  

  		int l = 0;

  		int m = 0;

  		for(unsigned int i = 0; i < C.size(); i++){

  			fx += C[i] * SH(l, m, theta, phi);

  			m++;

  			if(m > l){

  				l++;

  				m = -l;					

  			}

  

  		}

  

  		return fx;

  	}

  

  };		//end class sph_harmonics

  

  

  

  

  }

  

  

  #endif