Blame view

tira/envi/bsq.h 64.5 KB
ce6381d7   David Mayerich   updating to TIRA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
  #ifndef STIM_BSQ_H
  #define STIM_BSQ_H
  
  #include <stim/envi/envi_header.h>
  #include <stim/envi/hsi.h>
  #include <stim/envi/bil.h>
  #include <cstring>
  #include <utility>
  #include <vector>
  #include <deque>
  #include <chrono>
  #include <future>
  #include <algorithm>
  
  
  namespace stim{
  
  /**
  	The BIP class represents a 3-dimensional binary file stored using band sequential (BSQ) image encoding. The binary file is stored
  	such that X-Y "frames" are stored sequentially to form an image stack along the z-axis. When accessing the data sequentially on disk,
  	the dimensions read, from fastest to slowest, are X, Y, Z.
  
  	This class is optimized for data streaming, and therefore supports extremely large (terabyte-scale) files. Data is loaded from disk
  	on request. Functions used to access data are written to support efficient reading.
  */
  template <typename T>
  
  class bsq: public hsi<T> {
  
  
  protected:
  
  	//std::vector<double> w;	//band wavelengths
  	unsigned long long offset;
  
  	using binary<T>::R;
  
  	using hsi<T>::w;				//use the wavelength array in stim::hsi
  	using hsi<T>::nnz;
  	using binary<T>::progress;
  	using hsi<T>::X;
  	using hsi<T>::Y;
  	using hsi<T>::Z;
  
  public:
  
  	using binary<T>::open;
  	using binary<T>::file;
  	using binary<T>::read_line_2;
  	using binary<T>::read_plane_2;
  
  	bsq(){ hsi<T>::init_bsq(); }
  
  	/// Open a data file for reading using the class interface.
  
  	/// @param filename is the name of the binary file on disk
  	/// @param X is the number of samples along dimension 1
  	/// @param Y is the number of samples (lines) along dimension 2
  	/// @param B is the number of samples (bands) along dimension 3
  	/// @param header_offset is the number of bytes (if any) in the binary header
  	/// @param wavelengths is an STL vector of size B specifying a numerical label for each band
  	bool open(std::string filename,
  			  unsigned long long X,
  			  unsigned long long Y,
  			  unsigned long long B,
  			  unsigned long long header_offset,
  			  std::vector<double> wavelengths,
  			  stim::iotype io = stim::io_in){
  
  		//copy the wavelengths to the BSQ file structure
  		w = wavelengths;
  		//copy the wavelengths to the structure
  		offset = header_offset;
  
  		return open(filename, vec<unsigned long long>(X, Y, B), header_offset, io);
  	}
  
  	/// Retrieve a single band (based on index) and stores it in pre-allocated memory.
  
  	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
  	/// @param page <= B is the integer number of the band to be copied.
  	bool band_index( T * p, unsigned long long page){
  		return read_plane_2(p, page);		//call the binary read_plane function (don't let it update the progress)
  	}
  
  	/// Retrieve a single band (by numerical label) and stores it in pre-allocated memory.
  
  	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
  	/// @param wavelength is a floating point value (usually a wavelength in spectral data) used as a label for the band to be copied.
  	bool band( T * p, double wavelength, bool PROGRESS = false){
  		if(PROGRESS) progress = 0;
  		//if there are no wavelengths in the BSQ file
  		if(w.size() == 0){
  			band_index(p, (unsigned long long)wavelength);
  			if(PROGRESS) progress = 100;
  			return true;
  		}
  
  		unsigned long long XY = X() * Y();	//calculate the number of pixels in a band
  		unsigned long long page = 0;
  
  
  		//get the two neighboring bands (above and below 'wavelength')
  
  		//if wavelength is smaller than the first one in header file
  		if ( w[page] > wavelength ){
  			band_index(p, page);
  			if(PROGRESS) progress = 100;
  			return true;
  		}
  
  		while( w[page] < wavelength )
  		{
  			page++;
  			//if wavelength is larger than the last wavelength in the header file
  			//	(the wavelength is out of bounds)
  			if (page == Z()) {
  				band_index(p, Z()-1);		//return the last band
  				if(PROGRESS) progress = 100;
  				return true;
  			}
  		}
  		//when the page counter points to the first band above 'wavelength'
  		if ( wavelength < w[page] ){
  
  			//do the interpolation
  			T * p1;
  			T * p2;
  			p1=(T*)malloc( XY * sizeof(T));                     //memory allocation
  			p2=(T*)malloc( XY * sizeof(T));
  			band_index(p1, page - 1);
  			band_index(p2, page );
  			for(unsigned long long i=0; i < XY; i++){
  				double r = (wavelength - w[page-1]) / (w[page] - w[page-1]);
  				p[i] = (T)(((double)p2[i] - (double)p1[i]) * r + (double)p1[i]);
  			}
  			free(p1);
  			free(p2);
  		}
  		//if the wavelength is equal to a wavelength in header file
  		else{
  			band_index(p, page);		//return the band
  		}
  		if(PROGRESS) progress = 100;
  		return true;
  	}
  
  	/// Retrieve a single spectrum (Z-axis line) at a given (x, y) location and stores it in pre-allocated memory.
  
  	/// @param p is a pointer to pre-allocated memory at least B * sizeof(T) in size.
  	/// @param x is the x-coordinate (dimension 1) of the spectrum.
  	/// @param y is the y-coordinate (dimension 2) of the spectrum.
  	void spectrum(T* p, size_t n, bool PROGRESS){
  		read_line_2(p, n, PROGRESS);
  	}
  	void spectrum(T * p, unsigned long long x, unsigned long long y, bool PROGRESS = false){
  		read_line_2(p, x, y, PROGRESS);
  	}
  
  
  	/// Retrieve a single pixel and stores it in pre-allocated memory.
  
  	/// @param p is a pointer to pre-allocated memory at least sizeof(T) in size.
  	/// @param n is an integer index to the pixel using linear array indexing.
  	bool pixel(T * p, unsigned long long n){
  
  		unsigned long long bandnum = X() * Y();		//calculate numbers in one band
  		if ( n >= bandnum){							//make sure the pixel number is right
  			std::cout<<"ERROR: sample or line out of range"<<std::endl;
  			return false;
  		}
  
  		file.seekg(n * sizeof(T) + binary<T>::header, std::ios::beg);           //point to the certain pixel
  		for (unsigned long long i = 0; i < Z(); i++)
  		{
  			file.read((char *)(p + i), sizeof(T));
  			file.seekg((bandnum - 1) * sizeof(T), std::ios::cur);    //go to the next band
  		}
  
  		return true;
  	}
  
  	/// Perform baseline correction given a list of baseline points and stores the result in a new BSQ file.
  
  	/// @param outname is the name of the output file used to store the resulting baseline-corrected data.
  	/// @param wls is the list of baseline points based on band labels.
  	bool baseline(std::string outname, std::vector<double> wls, unsigned char* mask = NULL, bool PROGRESS = false )
  	{
  		size_t N = wls.size();			//get the number of baseline points
  
  		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
  		std::string headername = outname + ".hdr";              //the header file name
  
  		//simplify image resolution
  		unsigned long long B = Z();		//calculate the number of bands
  		unsigned long long XY = X() * Y();	//calculate the number of pixels in a band
  		unsigned long long S = XY * sizeof(T);		//calculate the number of bytes in a band
  
  		double ai, bi;	//stores the two baseline points wavelength surrounding the current band
  		double ci;		//stores the current band's wavelength
  
  		unsigned long long control=0;
  
  		T * a;					//pointers to the high and low band images
  		T * b;
  		T * c;				//pointer to the current image
  
  		a = (T*)malloc( S );     //memory allocation
  		b = (T*)malloc( S );
  		c = (T*)malloc( S );
  
  		if (a == NULL || b == NULL || c == NULL){
  			std::cout<<"ERROR: error allocating memory";
  			exit(1);
  		}
  
  
  		//initialize lownum, highnum, low, high
  		ai=w[0];
  
  		//if no baseline point is specified at band 0,
  			//set the baseline point at band 0 to 0
  		if(wls[0] != w[0]){
  			bi = wls[control];
  			memset(a, (char)0, S);
  		}
  		//else get the low band
  		else{
  			control += 1;
  			band(a, ai);
  			bi = wls[control];
  		}
  		//get the high band
  		band(b, bi);
  
  		//correct every band
  		for(unsigned long long cii = 0; cii < B; cii++){
  
  			//update baseline points, if necessary
  			if( w[cii] >= bi && cii != B - 1) {
  				//if the high band is now on the last BL point?
  				if (control != N-1) {
  
  					control++;		//increment the index
  
  					std::swap(a, b);	//swap the baseline band pointers
  
  					ai = bi;
  					bi = wls[control];
  					band(b, bi);
  
  				}
  				//if the last BL point on the last band of the file?
  				else if ( wls[control] < w[B - 1]) {
  
  					std::swap(a, b);	//swap the baseline band pointers
  
  					memset(b, (char)0, S);	//clear the high band
  
  					ai = bi;
  					bi = w[B - 1];
  				}
  			}
  
  			//get the current band
  			band_index(c, cii);
  			ci = w[cii];
  
  			//perform the baseline correction
  			for(unsigned long long i=0; i < XY; i++){
  				if(mask != NULL && !mask[i])								//if the pixel is excluded by a mask
  					c[i] = 0;												//set the value to zero
  				else{
  					double r = (double) (ci - ai) / (double) (bi - ai);
  					c[i] =(T) ( c[i] - (b[i] - a[i]) * r - a[i] );
  				}
  			}
  
  			target.write(reinterpret_cast<const char*>(c), S);   //write the corrected data into destination
  
  			if(PROGRESS)progress = (double)(cii+1) / B * 100;
  
  		}
  
  		//header.save(headername);         //save the new header file
  
  		free(a);
  		free(b);
  		free(c);
  		target.close();
  
  		return true;
  	}
  
  	/// Normalize all spectra based on the value of a single band, storing the result in a new BSQ file.
  
  	/// @param outname is the name of the output file used to store the resulting baseline-corrected data.
  	///	@param w is the label specifying the band that the hyperspectral image will be normalized to.
  	///	@param t is a threshold specified such that a spectrum with a value at w less than t is set to zero. Setting this threshold allows the user to limit division by extremely small numbers.
  	bool ratio(std::string outname, double w, unsigned char* mask = NULL, bool PROGRESS = false)
  	{
  		unsigned long long B = Z();		//calculate the number of bands
  		unsigned long long XY = X() * Y();	//calculate the number of pixels in a band
  		unsigned long long S = XY * sizeof(T);		//calculate the number of bytes in a band
  
  		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
  		std::string headername = outname + ".hdr";              //the header file name
  
  		T * b;					//pointers to the certain wavelength band
  		T * c;				//pointer to the current image
  
  		b = (T*)malloc( S );     //memory allocation
  		c = (T*)malloc( S );
  
  		band(b, w);             //get the certain band into memory
  
  		for(unsigned long long j = 0; j < B; j++)
  		{
  			band_index(c, j);                     //get the current band into memory
  			for(unsigned long long i = 0; i < XY; i++)
  			{
  				if(mask != NULL && !mask[i])
  					c[i] = (T)0.0;
  				else
  					c[i] = c[i] / b[i];
  			}
  			target.write(reinterpret_cast<const char*>(c), S);   //write normalized data into destination
  
  			if(PROGRESS) progress = (double)(j+1) / B * 100;
  		}
  
  
  
  		//header.save(headername);         //save the new header file
  
  		free(b);
  		free(c);
  		target.close();
  		return true;
  	}
  
  	void normalize(std::string outfile, unsigned char* mask = NULL, bool PROGRESS = false){
  		size_t B = Z();								//calculate the number of bands
  		size_t XY = X() * Y();						//calculate the number of pixels in a band
  		size_t XYb = XY * sizeof(T);				//calculate the size of a band in bytes
  
  		std::ofstream out(outfile.c_str(), std::ios::binary);		//open the output file
  		file.seekg(0, std::ios::beg);							//move the pointer to the current file to the beginning
  
  		T* len = (T*)malloc(XYb);					//allocate space to store the vector length
  		memset(len, 0, XYb);						//initialize the vector length to zero (0)
  
  		T* band = (T*) malloc(XYb);					//allocate space to store a band image
  
  		for(size_t b = 0; b < B; b++){
  			file.read((char*)band, XYb);
  			for(size_t xy = 0; xy < XY; xy++){
  				if(mask == NULL || mask[xy]){
  					len[xy] += pow(band[xy], 2);		//sum the squared value for each pixel value in the band
  				}
  			}
  			if(PROGRESS) progress = (double) (b+1) / (double)B * 50;
  		}
  		for(size_t xy = 0; xy < XY; xy++){				//for each pixel, calculate the square root
  			if(mask == NULL || mask[xy]){
  				len[xy] += pow(band[xy], 2);		//sum the squared value for each pixel value in the band
  			}
  		}
  		file.seekg(0, std::ios::beg);							//move the pointer to the current file to the beginning
  		for(size_t b = 0; b < B; b++){
  			file.read((char*)band, XYb);
  			for(size_t xy = 0; xy < XY; xy++){
  				if(mask == NULL || mask[xy]){
  					band[xy] /= len[xy];						//divide the band by the vector length
  				}
  			}
  			out.write((char*)band, XYb);
  			if(PROGRESS) progress = (double) (b+1) / (double)B * 50 + 50;
  		}
  
  	}
  
  	bool select(std::string outfile, std::vector<double> bandlist, unsigned char* mask = NULL, bool PROGRESS = false) {
  		std::ofstream out(outfile.c_str(), std::ios::binary);		//open the output file
  		if (!out) {
  			std::cout << "ERROR opening output file: " << outfile << std::endl;
  			return false;
  		}
  		file.seekg(0, std::ios::beg);							//move the pointer to the current file to the beginning
  
  		size_t B = Z();								//calculate the number of bands
  		size_t XY = X() * Y();						//calculate the number of pixels in a band
  		size_t in_bytes = XY * sizeof(T);				//calculate the size of a band in bytes
  
  		T* in = (T*)malloc(in_bytes);				//allocate space for the band image
  		size_t nb = bandlist.size();				//get the number of bands in the output image
  		for (size_t b = 0; b < nb; b++) {
  			band(in, bandlist[b]);					//get the band associated with the given wavelength
  			out.write((char*)in, in_bytes);		//write the band to the output file
  			if (PROGRESS) progress = (double)(b + 1) / (double)bandlist.size() * 100;
  		}
  		out.close();
  		free(in);
  		return true;
  	}
  
  	size_t readlines(T* dest, size_t start, size_t n){
  		return hsi<T>::read(dest, 0, start, 0, X(), n, Z());
  	}
  
  	size_t writeblock(std::ofstream* f, T* src, size_t n){
  		auto t0 = std::chrono::high_resolution_clock::now();
  		f->write((char*)src, n);
  		auto t1 = std::chrono::high_resolution_clock::now();
  		return std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0).count();
  	}
  
  	/// Convert this BSQ file to a BIL
  	bool bil(std::string outname, bool PROGRESS = false, bool VERBOSE = false, bool OPTIMIZATION = true){
  
  		const size_t buffers = 4;													//number of buffers required for this algorithm
  		
  		size_t mem_per_batch = binary<T>::buffer_size / buffers;					//calculate the maximum memory available for a batch
  
  		size_t slice_bytes = X() * Z() * sizeof(T);									//number of bytes in an input batch slice (Y-slice in this case)
  		size_t max_slices_per_batch = mem_per_batch / slice_bytes;					//maximum number of slices we can process in one batch given memory constraints
  
  		std::cout<<"maximum memory available for processing: "<<(double)binary<T>::buffer_size/(double)1000000<<" MB"<<std::endl;
  		std::cout<<"     this supports a batch size of "<<max_slices_per_batch<<" Y-axis slices ("<<X()<<" x "<<Z()<<") = "<<X() * Z() * sizeof(T) * max_slices_per_batch/1000000<<" MB"<<std::endl;
  
  		if(max_slices_per_batch == 0){														//if there is insufficient memory for a single slice, throw an error
  			std::cout<<"error, insufficient memory for stim::bsq::bil()"<<std::endl;
  			exit(1);
  		}
  		size_t max_batch_bytes = max_slices_per_batch * slice_bytes;				//calculate the amount of memory that will be allocated for all four buffers
  
  		stream_optimizer O(1, max_slices_per_batch);
  
  		T* src[2];																	//source double-buffer for asynchronous batching
  		src[0] = (T*) malloc(max_batch_bytes);
  		src[1] = (T*) malloc(max_batch_bytes);
  		T* dst[2];																	//destination double-buffer for asynchronous batching
  		dst[0] = (T*) malloc(max_batch_bytes);
  		dst[1] = (T*) malloc(max_batch_bytes);
  
  		size_t N[2];																		//number of slices stored in buffers 0 and 1
  		N[0] = N[1] = std::min<size_t>(Y(), max_slices_per_batch);										//start with the maximum number of slices that can be stored (may be the entire data set)
  
  		std::ofstream target(outname.c_str(), std::ios::binary);					//open an output file for writing
  																		//initialize with buffer 0 (used for double buffering)
  		size_t y_load = 0;
  		size_t y_proc = 0;
  		std::future<size_t> rthread;
  		std::future<std::ostream&> wthread;										//create asynchronous threads for reading and writing
  
  		std::chrono::high_resolution_clock::time_point t_start, pt_start;						//high-resolution timers
  		std::chrono::high_resolution_clock::time_point t_end, pt_end;
  		size_t t_batch;																//number of milliseconds to process a batch
  		size_t t_total = 0;														//total time for operation
  		size_t pt_total = 0;													//total time spent processing data
  		size_t rt_total = 0;													//total time spent reading data
  		size_t wt_total = 0;
  		size_t dr = 0;
  		
  		rt_total += readlines(src[0], 0, N[0]);					//read the first batch into the 0 source buffer
  		y_load += N[0];											//increment the loaded slice counter
  		int b = 1;												//initialize the double buffer to 0
  		while(y_proc < Y()){													//while there are still slices to be processed
  			t_start = std::chrono::high_resolution_clock::now();					//start the timer for this batch
  			if(y_load < Y()){													//if there are still slices to be loaded, load them
  				//if(y_proc > 0){
  					
  					
  				//}
  				if(y_load + N[b] > Y()) N[b] = Y() - y_load;					//if the next batch would process more than the total slices, adjust the batch size
  				rthread = std::async(std::launch::async, &stim::bsq<T>::readlines, this, src[b], y_load, N[b]);
  				//rt_total += rthread.get();
  				y_load += N[b];													//increment the number of loaded slices
  			}
  
  			b = !b;																//swap the double-buffer
  			pt_total += binary<T>::permute(dst[b], src[b], X(), N[b], Z(), 0, 2, 1);		//permute the batch to a BIL file
  			wt_total += writeblock(&target, dst[b], N[b] * slice_bytes);			//write the permuted data to the output file
  			y_proc += N[b];														//increment the counter of processed pixels
  			if(PROGRESS) progress = (double)( y_proc + 1 ) / Y() * 100;			//increment the progress counter based on the number of processed pixels
  			if(y_proc < Y()) rt_total += rthread.get();					//if a new batch was set to load, make sure it loads after calculations
  			t_end = std::chrono::high_resolution_clock::now();
  			t_batch = std::chrono::duration_cast<std::chrono::milliseconds>(t_end-t_start).count();
  			t_total += t_batch;
  			if(OPTIMIZATION)
  				N[b] = O.update(N[!b] * slice_bytes, t_batch, binary<T>::data_rate, VERBOSE);					//set the batch size based on optimization
  			//binary<T>::data_rate = dr;
  			//std::cout<<"New N = "<<N[!b]<<" selected with "<<(double)data_rate / 1000000<<" MB/s"<<std::endl;
  		}
  		
  		free(src[0]);															//free buffer resources
  		free(src[1]);
  		free(dst[0]);
  		free(dst[1]);
  		//if(VERBOSE){
  			std::cout<<"total time to execute bsq::bil(): "<<t_total<<" ms"<<std::endl;
  			std::cout<<"     total time spent processing: "<<pt_total<<" ms"<<std::endl;
  			std::cout<<"        total time spent reading: "<<rt_total<<" ms"<<std::endl;
  			std::cout<<"        total time spent writing: "<<wt_total<<" ms"<<std::endl;
  		//}
  		return true;															//return true
  	}
  
  	/// Convert this BSQ file to a BIP
  	bool bip(std::string outname, bool PROGRESS = false, bool VERBOSE = false, bool OPTIMIZATION = true){
  
  		const size_t buffers = 4;													//number of buffers required for this algorithm
  		
  		size_t mem_per_batch = binary<T>::buffer_size / buffers;					//calculate the maximum memory available for a batch
  
  		size_t slice_bytes = X() * Z() * sizeof(T);									//number of bytes in an input batch slice (Y-slice in this case)
  		size_t max_slices_per_batch = mem_per_batch / slice_bytes;					//maximum number of slices we can process in one batch given memory constraints
  
  		std::cout<<"maximum memory available for processing: "<<(double)binary<T>::buffer_size/(double)1000000<<" MB"<<std::endl;
  		std::cout<<"     this supports a batch size of "<<max_slices_per_batch<<" Y-axis slices ("<<X()<<" x "<<Z()<<") = "<<X() * Z() * sizeof(T) * max_slices_per_batch/1000000<<" MB"<<std::endl;
  
  		if(max_slices_per_batch == 0){														//if there is insufficient memory for a single slice, throw an error
  			std::cout<<"error, insufficient memory for stim::bsq::bil()"<<std::endl;
  			exit(1);
  		}
  		size_t max_batch_bytes = max_slices_per_batch * slice_bytes;				//calculate the amount of memory that will be allocated for all four buffers
  
  		stream_optimizer O(1, max_slices_per_batch);
  
  		T* src[2];																	//source double-buffer for asynchronous batching
  		src[0] = (T*) malloc(max_batch_bytes);
  		src[1] = (T*) malloc(max_batch_bytes);
  		T* dst[2];																	//destination double-buffer for asynchronous batching
  		dst[0] = (T*) malloc(max_batch_bytes);
  		dst[1] = (T*) malloc(max_batch_bytes);
  
  		size_t N[2];																		//number of slices stored in buffers 0 and 1
  		N[0] = N[1] = std::min<size_t>(Y(), max_slices_per_batch);										//start with the maximum number of slices that can be stored (may be the entire data set)
  
  		std::ofstream target(outname.c_str(), std::ios::binary);					//open an output file for writing
  																		//initialize with buffer 0 (used for double buffering)
  		size_t y_load = 0;
  		size_t y_proc = 0;
  		std::future<size_t> rthread;
  		std::future<std::ostream&> wthread;										//create asynchronous threads for reading and writing
  
  		std::chrono::high_resolution_clock::time_point t_start, pt_start;						//high-resolution timers
  		std::chrono::high_resolution_clock::time_point t_end, pt_end;
  		size_t t_batch;																//number of milliseconds to process a batch
  		size_t t_total = 0;														//total time for operation
  		size_t pt_total = 0;													//total time spent processing data
  		size_t rt_total = 0;													//total time spent reading data
  		size_t wt_total = 0;
  		size_t dr = 0;
  		
  		rt_total += readlines(src[0], 0, N[0]);					//read the first batch into the 0 source buffer
  		y_load += N[0];											//increment the loaded slice counter
  		int b = 1;												//initialize the double buffer to 0
  		while(y_proc < Y()){													//while there are still slices to be processed
  			t_start = std::chrono::high_resolution_clock::now();					//start the timer for this batch
  			if(y_load < Y()){													//if there are still slices to be loaded, load them
  				//if(y_proc > 0){
  					
  					
  				//}
  				if(y_load + N[b] > Y()) N[b] = Y() - y_load;					//if the next batch would process more than the total slices, adjust the batch size
  				rthread = std::async(std::launch::async, &stim::bsq<T>::readlines, this, src[b], y_load, N[b]);
  				//rt_total += rthread.get();
  				y_load += N[b];													//increment the number of loaded slices
  			}
  
  			b = !b;																//swap the double-buffer
  			pt_total += binary<T>::permute(dst[b], src[b], X(), N[b], Z(), 2, 0, 1);		//permute the batch to a BIL file
  			wt_total += writeblock(&target, dst[b], N[b] * slice_bytes);			//write the permuted data to the output file
  			y_proc += N[b];														//increment the counter of processed pixels
  			if(PROGRESS) progress = (double)( y_proc + 1 ) / Y() * 100;			//increment the progress counter based on the number of processed pixels
  			if(y_proc < Y()) rt_total += rthread.get();					//if a new batch was set to load, make sure it loads after calculations
  			t_end = std::chrono::high_resolution_clock::now();
  			t_batch = std::chrono::duration_cast<std::chrono::milliseconds>(t_end-t_start).count();
  			t_total += t_batch;
  			if(OPTIMIZATION)
  				N[b] = O.update(N[!b] * slice_bytes, t_batch, binary<T>::data_rate, VERBOSE);					//set the batch size based on optimization
  			//binary<T>::data_rate = dr;
  			//std::cout<<"New N = "<<N[!b]<<" selected with "<<(double)data_rate / 1000000<<" MB/s"<<std::endl;
  		}
  		
  		free(src[0]);															//free buffer resources
  		free(src[1]);
  		free(dst[0]);
  		free(dst[1]);
  		if(VERBOSE){
  			std::cout<<"total time to execute bsq::bip(): "<<t_total<<" ms"<<std::endl;
  			std::cout<<"     total time spent processing: "<<pt_total<<" ms"<<std::endl;
  			std::cout<<"        total time spent reading: "<<rt_total<<" ms"<<std::endl;
  			std::cout<<"        total time spent writing: "<<wt_total<<" ms"<<std::endl;
  		}
  		return true;															//return true
  	}
  
  	/// Return a baseline corrected band given two adjacent baseline points and their bands. The result is stored in a pre-allocated array.
  
  	/// @param lb is the label value for the left baseline point
  	/// @param rb is the label value for the right baseline point
  	/// @param lp is a pointer to an array holding the band image for the left baseline point
  	/// @param rp is a pointer to an array holding the band image for the right baseline point
  	/// @param wavelength is the label value for the requested baseline-corrected band
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size.
  	bool baseline_band(double lb, double rb, T* lp, T* rp, double wavelength, T* result){
  
  		unsigned long long XY = X() * Y();
  		band(result, wavelength);		//get band
  
  		//perform the baseline correction
  		double r = (double) (wavelength - lb) / (double) (rb - lb);
  		for(unsigned long long i=0; i < XY; i++){
  			result[i] =(T) (result[i] - (rp[i] - lp[i]) * r - lp[i] );
  		}
  		return true;
  	}
  
  	/// Return a baseline corrected band given two adjacent baseline points. The result is stored in a pre-allocated array.
  
  	/// @param lb is the label value for the left baseline point
  	/// @param rb is the label value for the right baseline point
  	/// @param bandwavelength is the label value for the desired baseline-corrected band
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size.
  	bool height(double lb, double rb, double bandwavelength, T* result){
  
  		T* lp;
  		T* rp;
  		unsigned long long XY = X() * Y();
  		unsigned long long S = XY * sizeof(T);
  		lp = (T*) malloc(S);			//memory allocation
  		rp = (T*) malloc(S);
  
  		band(lp, lb);
  		band(rp, rb);
  
  		baseline_band(lb, rb, lp, rp, bandwavelength, result);
  
  		free(lp);
  		free(rp);
  		return true;
  	}
  
  
  	/// Calculate the area under the spectrum between two specified points and stores the result in a pre-allocated array.
  
  	/// @param lb is the label value for the left baseline point
  	/// @param rb is the label value for the right baseline point
  	/// @param lab is the label value for the left bound (start of the integration)
  	/// @param rab is the label value for the right bound (end of the integration)
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
  	bool area(double lb, double rb, double lab, double rab, T* result){
  
  		T* lp;	//left band pointer
  		T* rp;	//right band pointer
  		T* cur;		//current band 1
  		T* cur2;	//current band 2
  
  		unsigned long long XY = X() * Y();
  		unsigned long long S = XY * sizeof(T);
  
  		lp = (T*) malloc(S);			//memory allocation
  		rp = (T*) malloc(S);
  		cur = (T*) malloc(S);
  		cur2 = (T*) malloc(S);
  
  		//find the wavelength position in the whole band
  		unsigned long long n = w.size();
  		unsigned long long ai = 0;		//left bound position
  		unsigned long long bi = n - 1;		//right bound position
  
  
  
  		//to make sure the left and the right bound are in the bandwidth
  		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
  			if (lb < w[0]) {
  				std::cout << "bsq::area ERROR - left bound " << lb << " is below the minimum available wavelength " << w[0] << std::endl;
  			}
  			if (rb < w[0]) {
  				std::cout << "bsq::area ERROR - right bound " << rb << " is below the minimum available wavelength " << w[0] << std::endl;
  			}
  			if (lb > w[n - 1]) { 
  				std::cout << "bsq::area ERROR - left bound " << lb << " is above the maximum available wavelength " << w[n - 1] << std::endl; 
  			}
  			if (rb > w[n - 1]) { 
  				std::cout << "bsq::area ERROR - right bound " << rb << " is above the maximum available wavelength " << w[0] << std::endl; 
  			}
  			return false;
  		}
  		//to make sure right bound is bigger than left bound
  		else if(lb > rb){
  			std::cout << "bsq::area ERROR - right bound " << rb << " should be larger than left bound " << lb << std::endl;
  			return false;
  		}
  
  		//find the indices of the left and right baseline points
  		while (lab >= w[ai]){
  			ai++;
  		}
  		while (rab <= w[bi]){
  			bi--;
  		}
  
  		band(lp, lb);						//get the band images for the left and right baseline points
  		band(rp, rb);
  
  		// calculate the average value of the indexed region
  		memset(result, 0, S);								//initialize the integral to zero (0)
  
  		//integrate the region between the specified bands and the closest indexed band
  		//		this integrates the "tails" of the spectrum that lie outside the main indexed region
  		baseline_band(lb, rb, lp, rp, rab, cur2);		//calculate the image for the right-most band in the integral
  		baseline_band(lb, rb, lp, rp, w[bi], cur);		//calculate the image for the right-most indexed band
  		for(unsigned long long j = 0; j < XY; j++){
  			result[j] += (T)((rab - w[bi]) * ((double)cur[j] + (double)cur2[j]) / 2.0);
  		}
  		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
  		baseline_band(lb, rb, lp, rp, w[ai], cur);
  		for(unsigned long long j = 0; j < XY; j++){
  			result[j] += (T)((w[ai] - lab) * ((double)cur[j] + (double)cur2[j]) / 2.0);
  		}
  
  		//integrate the main indexed region
  		ai++;
  		for(unsigned long long i = ai; i <= bi ;i++)	//for each band in the integral
  		{
  			baseline_band(lb, rb, lp, rp, w[ai], cur2);	//get the baselined band
  			for(unsigned long long j = 0; j < XY; j++){	//for each pixel in that band
  				result[j] += (T)((w[ai] - w[ai-1]) * ((double)cur[j] + (double)cur2[j]) / 2.0);
  			}
  			std::swap(cur,cur2);		//swap the band pointers
  		}
  
  		free(lp);
  		free(rp);
  		free(cur);
  		free(cur2);
  		return true;
  	}
  
  	/// Compute the ratio of two baseline-corrected peaks. The result is stored in a pre-allocated array.
  
  	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
  	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
  	/// @param pos1 is the label value for the first peak (numerator) position
  	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
  	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
  	/// @param pos2 is the label value for the second peak (denominator) position
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
  	bool ph_to_ph(T* result, double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, unsigned char* mask = NULL){
  
  		size_t XYbytes = X() * Y() * sizeof(T);			//calculate the size of the band image (in bytes)
  
  		T* p1 = (T*)malloc(XYbytes);					//allocate space for both bands in the ratio
  		T* p2 = (T*)malloc(XYbytes);
  
  		memset(result, 0, XYbytes);						//initialize the ratio to zero
  		//get the two peak band
  		height(lb1, rb1, pos1, p1);
  		height(lb2, rb2, pos2, p2);
  		//calculate the ratio in result
  		for(unsigned long long i = 0; i < X() * Y(); i++){
  			if(mask == NULL || mask[i]){
  				result[i] = p1[i] / p2[i];
  			}
  		}
  
  		free(p1);
  		free(p2);
  		return true;
  	}
  
  	/// Compute the ratio between a peak area and peak height.
  
  	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
  	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
  	/// @param pos1 is the label value for the first peak (numerator) position
  	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
  	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
  	/// @param pos2 is the label value for the second peak (denominator) position
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
  	bool pa_to_ph(T* result, double lb1, double rb1, double lab1, double rab1,
  					double lb2, double rb2, double pos, unsigned char* mask = NULL){
  
  		size_t bytes = X() * Y() * sizeof(T);
  		T* p1 = (T*)malloc(bytes);							//allocate space for both ratio components
  		T* p2 = (T*)malloc(bytes);
  
  		memset(result, 0, bytes);							//initialize the ratio to zero
  		//get the area and the peak band
  		area(lb1, rb1, lab1, rab1, p1);
  		height(lb2, rb2, pos, p2);
  		//calculate the ratio in result
  		for(unsigned long long i = 0; i < X() * Y(); i++){
  			if(mask == NULL || mask[i])
  				result[i] = p1[i] / p2[i];
  		}
  
  		free(p1);
  		free(p2);
  		return true;
  	}
  
  	/// Compute the ratio between two peak areas.
  
  	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
  	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
  	/// @param lab1 is the label value for the left bound (start of the integration) of the first peak (numerator)
  	/// @param rab1 is the label value for the right bound (end of the integration) of the first peak (numerator)
  	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
  	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
  	/// @param lab2 is the label value for the left bound (start of the integration) of the second peak (denominator)
  	/// @param rab2 is the label value for the right bound (end of the integration) of the second peak (denominator)
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
  	bool pa_to_pa(T* result, double lb1, double rb1, double lab1, double rab1,
  					double lb2, double rb2, double lab2, double rab2, unsigned char* mask = NULL){
  
  		size_t bytes = X() * Y() * sizeof(T);
  		T* p1 = (T*)malloc(bytes);						//allocate space for each of the operands
  		T* p2 = (T*)malloc(bytes);
  
  		memset(result, 0, bytes);						//initialize the ratio result to zero (0)
  		//get the area and the peak band
  		area(lb1, rb1, lab1, rab1, p1);
  		area(lb2, rb2, lab2, rab2, p2);
  		//calculate the ratio in result
  		for(unsigned long long i = 0; i < X() * Y(); i++){
  			if(mask == NULL || mask[i])						//if the pixel is masked
  				result[i] = p1[i] / p2[i];					//calculate the ratio
  		}
  
  		free(p1);
  		free(p2);
  		return true;
  	}
  
  	/// Compute the definite integral of a baseline corrected peak weighted by the corresponding wavelength
  
  	/// @param lb is the label value for the left baseline point
  	/// @param rb is the label value for the right baseline point
  	/// @param lab is the label for the start of the definite integral
  	/// @param rab is the label for the end of the definite integral
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
  	bool x_area(double lb, double rb, double lab, double rab, T* result){
  		T* lp;	//left band pointer
  		T* rp;	//right band pointer
  		T* cur;		//current band 1
  		T* cur2;	//current band 2
  
  		unsigned long long XY = X() * Y();
  		unsigned long long S = XY * sizeof(T);
  
  		lp = (T*) malloc(S);			//memory allocation
  		rp = (T*) malloc(S);
  		cur = (T*) malloc(S);
  		cur2 = (T*) malloc(S);
  
  		//find the wavelenght position in the whole band
  		unsigned long long n = w.size();
  		unsigned long long ai = 0;		//left bound position
  		unsigned long long bi = n - 1;		//right bound position
  
  		//to make sure the left and the right bound are in the bandwidth
  		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
  			std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
  			exit(1);
  		}
  		//to make sure rigth bound is bigger than left bound
  		else if(lb > rb){
  			std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
  			exit(1);
  		}
  
  		//get the position of lb and rb
  		while (lab >= w[ai]){
  			ai++;
  		}
  		while (rab <= w[bi]){
  			bi--;
  		}
  
  		band(lp, lb);
  		band(rp, rb);
  
  		memset(result, (char)0, S);						//initialize the integral to zero (0)
  
  		//calculate the beginning and the ending part
  		baseline_band(lb, rb, lp, rp, rab, cur2);		//ending part
  		baseline_band(lb, rb, lp, rp, w[bi], cur);
  		for(unsigned long long j = 0; j < XY; j++){
  			result[j] += (T)((rab - w[bi]) * (rab + w[bi]) * ((double)cur[j] + (double)cur2[j]) / 4.0);
  		}
  		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
  		baseline_band(lb, rb, lp, rp, w[ai], cur);
  		for(unsigned long long j = 0; j < XY; j++){
  			result[j] += (T)((w[ai] - lab) * (w[ai] + lab) * ((double)cur[j] + (double)cur2[j]) / 4.0);
  		}
  
  		//calculate f(x) times x
  		ai++;
  		for(unsigned long long i = ai; i <= bi ;i++){
  			baseline_band(lb, rb, lp, rp, w[ai], cur2);
  			for(unsigned long long j = 0; j < XY; j++){
  				T v = (T)((w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * ((double)cur[j] + (double)cur2[j]) / 4.0);
  				result[j] += v;
  			}
  			std::swap(cur,cur2);		//swap the band pointers
  		}
  
  		free(lp);
  		free(rp);
  		free(cur);
  		free(cur2);
  		return true;
  	}
  
  	/// Compute the centroid of a baseline corrected peak.
  	/// Note that the values for the centroid can be outside of [lab, rab] if the spectrum goes negative.
  
  	/// @param lb is the label value for the left baseline point
  	/// @param rb is the label value for the right baseline point
  	/// @param lab is the label for the start of the peak
  	/// @param rab is the label for the end of the peak
  	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
  	bool centroid(T* result, double lb, double rb, double lab, double rab, unsigned char* mask = NULL){
  		size_t bytes = X() * Y() * sizeof(T);		//calculate the number of bytes in a band image
  		T* p1 = (T*)malloc(X() * Y() * sizeof(T));	//allocate space for both operands
  		T* p2 = (T*)malloc(X() * Y() * sizeof(T));
  
  		memset(result, 0, bytes);					//initialize the ratio result to zero (0)
  		//get the area and the peak band
  		x_area(lb, rb, lab, rab, p1);
  		area(lb, rb, lab, rab, p2);
  		//calculate the ratio in result
  		for(unsigned long long i = 0; i < X() * Y(); i++){
  			if(mask == NULL || mask[i]){
  				result[i] = p1[i] / p2[i];
  			}
  		}
  
  		free(p1);
  		free(p2);
  		return true;
  	}
  
  	/// Create a mask based on a given band and threshold value.
  
  	/// All pixels in the
  	/// specified band greater than the threshold are true and all pixels less than the threshold are false.
  	/// @param mask_band is the band used to specify the mask
  	/// @param threshold is the threshold used to determine if the mask value is true or false
  	/// @param p is a pointer to a pre-allocated array at least X * Y in size
  	bool build_mask(unsigned char* out_mask, double mask_band, double lower, double upper, unsigned char* mask = NULL, bool PROGRESS = false){
  		memset(out_mask, 0, X() * Y());							//initialize the mask to zero
  
  		T* temp = (T*)malloc(X() * Y() * sizeof(T));		//allocate memory for the certain band
  		band(temp, mask_band);
  
  		for (unsigned long long i = 0; i < X() * Y(); i++) {
  			if(mask == NULL || mask[i] != 0){
  				if(temp[i] > lower && temp[i] < upper){
  					out_mask[i] = 255;
  				}
  				else
  					out_mask[i] = 0;
  			}
  
  			if(PROGRESS) progress = (double) (i+1) / (X() * Y()) * 100;
  		}
  
  		free(temp);
  		return true;
  
  	}
  
  	/// Apply a mask file to the BSQ image, setting all values outside the mask to zero.
  
  	/// @param outfile is the name of the masked output file
  	/// @param p is a pointer to memory of size X * Y, where p(i) = 0 for pixels that will be set to zero.
  	bool apply_mask(std::string outfile, unsigned char* p, bool PROGRESS = false){
  
  		std::ofstream target(outfile.c_str(), std::ios::binary);
  
  		unsigned long long XY = X() * Y();		//calculate number of a band
  		unsigned long long L = XY * sizeof(T);
  
  		T * temp = (T*)malloc(L);
  
  		for (unsigned long long i = 0; i < Z(); i++)			//for each spectral bin
  		{
  			band_index(temp, i);					//get the specified band (by index)
  			for ( unsigned long long j = 0; j < XY; j++)		// for each pixel
  			{
  				if(p[j] == 0){						//if the mask is 0 at that pixel
  					temp[j] = 0;					//set temp to zero
  				}
  				else{
  					continue;
  				}
  			}
  			target.write(reinterpret_cast<const char*>(temp), L);   //write the XY slice at that band to disk
  			if(PROGRESS) progress = (double)(i + 1) / (double)Z() * 100;
  		}
  		target.close();
  		free(temp);
  		return true;
  	}
  
  	/// Copies all spectra corresponding to nonzero values of a mask into a pre-allocated matrix of size (B x P)
  	///		where P is the number of masked pixels and B is the number of bands. The allocated memory can be accessed
  	///		using the following indexing: i = p*B + b
  	/// @param matrix is the destination for the pixel data
  	/// @param mask is the mask
  	bool sift(T* matrix, unsigned char* mask = NULL, bool PROGRESS = false){
  		unsigned long long XY = X() * Y(); 					//Number of XY pixels
  		unsigned long long L = XY * sizeof(T); 				//size of XY plane (in bytes)
  
  		//calculate the number of pixels in the mask
  		//unsigned long long P = nnz(mask);
  
  		T* band_image = (T*) malloc( XY * sizeof(T));		//allocate space for a single band
  
  		unsigned long long i;								//pixel index into the sifted array
  		for(unsigned long long b = 0; b < Z(); b++){		//for each band in the data set
  			band_index(band_image, b);						//retrieve an image of that band
  
  			i = 0;
  			for(unsigned long long xy = 0; xy < XY; xy++){
  				if(mask == NULL || mask[xy] != 0){				//if the pixel is valid
  					matrix[i*Z() + b] = band_image[xy];			//copy it to the appropriate point in the values[] array
  					i++;
  				}
  				if(PROGRESS) progress = (double)(b * XY + xy+1) / (double)(XY * Z()) * 100;
  			}
  		}
  
  		return true;
  	}
  
  	/// Saves to disk only those spectra corresponding to mask values != 0
  	/// @param outfile is the name of the sifted ENVI file to be written to disk
  	/// @param unsigned char* p is the mask file used for sifting
  	bool sift(std::string outfile, unsigned char* p, bool PROGRESS = false){
  		std::ofstream target(outfile.c_str(), std::ios::binary);
  		// open a band (XY plane)
  		unsigned long long XY = X() * Y(); //Number of XY pixels
  		unsigned long long L = XY * sizeof(T); //size of XY pixels
  		unsigned long long B = Z();
  
  		T * temp = (T*)malloc(L); //allocate memory for a band
  		T * temp_vox = (T*)malloc(sizeof(T)); //allocate memory for one voxel
  
  		for (unsigned long long i = 0; i < B; i++)			//for each spectral bin
  		{
  			band_index(temp, i);					//get the specified band (XY sheet by index)
  			for (unsigned long long j = 0; j < XY; j++)		// for each pixel
  			{
  				if (p[j] != 0){						//if the mask is != 0 at that pixel
  					temp_vox[0] = temp[j];
  					target.write(reinterpret_cast<const char*>(temp_vox), sizeof(T));   //write the XY slice at that band to disk
  				}
  				else{
  					continue;
  				}
  			}
  			if(PROGRESS) progress = (double)(i+1)/ B * 100;
  		}
  		target.close();
  		free(temp);
  
  		progress = 100;
  
  		return true;
  	}
  
  	/// Generates a spectral image from a matrix of spectral values in lexicographic order and a mask
  	bool unsift(std::string outfile, unsigned char* p, unsigned long long samples, unsigned long long lines, bool PROGRESS = false){
  
  		//create a binary output stream
  		std::ofstream target(outfile.c_str(), std::ios::binary);
  
  		//make sure that there's only one line
  		if(Y() != 1){
  			std::cout<<"ERROR in stim::bsq::sift() - number of lines does not equal 1"<<std::endl;
  			return false;
  		}
  
  		std::cout<<"started sifting"<<std::endl;
  
  		//get the number of pixels and bands in the input image
  		unsigned long long P = X(); 					//Number of pixels
  		unsigned long long B = Z();					//number of bands
  		unsigned long long XY = samples * lines;		//total number of pixels in an unsifted image
  
  		// allocate memory for a sifted band
  		T * sifted = (T*)malloc(P * sizeof(T)); //allocate memory for a band
  
  		//allocate memory for an unsifted band image
  		T* unsifted = (T*) malloc(XY * sizeof(T));
  
  		//for each band
  		for(unsigned long long b = 0; b < B; b++){
  
  			//set the unsifted index value to zero
  			unsigned long long i = 0;
  
  			//retrieve the sifted band (masked pixels only)
  			band_index(sifted, b);
  
  			//for each pixel in the final image (treat it as a 1D image)
  			for(unsigned long long xi = 0; xi < XY; xi++){
  				if( p[xi] == 0 )
  					unsifted[xi] = 0;
  				else{
  					unsifted[xi] = sifted[i];
  					i++;
  				}
  				//std::cout<<xi<<"/"<<XY<<",   "<<b<<"/"<<B<<std::endl;
  				if(PROGRESS) progress = (double)((b + 1) * XY + xi + 1) / (B * XY) * 100;
  			}
  			//std::cout<<b*XY<<"/"<<B*XY<<"      "<<B<<"-"<<XY<<std::endl;
  			//write the band image to disk
  			target.write(reinterpret_cast<const char*>(unsifted), sizeof(T) * XY);
  		}
  
  		//std::cout<<"unsifted"<<std::endl;
  		//progress = 100;
  
  		return true;
  	}
  
  
  	/// Calculate the mean band value (average along B) at each pixel location.
  
  	/// @param p is a pointer to memory of size X * Y * sizeof(T) that will store the band averages.
  	bool band_avg(T* p){
  		unsigned long long XY = X() * Y();
  		T* temp = (T*)malloc(sizeof(T) * XY);
  		//initialize p
  		band_index(p, 0);
  		for (unsigned long long j = 0; j < XY; j++){
  			p[j] /= (T)Z();
  		}
  		//get every band and add them all
  		for (unsigned long long i = 1; i < Z(); i++){
  			band_index(temp, i);
  			for (unsigned long long j = 0; j < XY; j++){
  				p[j] += temp[j]/(T)Z();
  			}
  		}
  		free(temp);
  		return true;
  	}
  
  	/// Calculate the mean value for all masked (or valid) pixels in a band and returns the average spectrum
  
  	/// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum
  	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
  	bool mean_spectrum(double* m, double* std, unsigned char* mask = NULL, bool PROGRESS = false){
  		unsigned long long XY = X() * Y();
  		unsigned long long count = nnz(mask);						//count will store the number of masked pixels
  		T* temp = (T*)malloc(sizeof(T) * XY);
  		
  		//this loops goes through each band in B (Z())
  		//	masked (or valid) pixels from that band are averaged and the average is stored in p
  		double e_x;										//stores E[x]^2
  		double e_x2;										//stores E[x^2]
  		double x;
  		for (unsigned long long i = 0; i < Z(); i++){
  			e_x = 0;
  			e_x2 = 0;
  			band_index(temp, i);				//get the band image and store it in temp
  			for (unsigned long long j = 0; j < XY; j++){	//loop through temp, averaging valid pixels
  				if (mask == NULL || mask[j] != 0){
  					x = (double)temp[j];
  					e_x += x / (double)count;				//sum the expected value of x
  					e_x2 += (x * x) / (double)count;		//sum the expected value of x^2
  				}
  			}
  			m[i] = e_x;												//store the mean
  			std[i] = sqrt(e_x2 - e_x * e_x);						//calculate the standard deviation
  			if(PROGRESS) progress = (double)(i+1) / Z() * 100;		//update the progress counter
  		}
  		free(temp);
  		return true;
  	}
  
  	/// Calculate the median value for all masked (or valid) pixels in a band and returns the median spectrum
  
  	/// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum
  	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
  	bool median_spectrum(double* m, unsigned char* mask = NULL, bool PROGRESS = false){
  		size_t XY = X() * Y();
  		size_t count = nnz(mask);						//count will store the number of masked pixels
  		T* temp = (T*)malloc(sizeof(T) * XY);
  		
  		std::vector<T> band_values(count);				//create an STD vector of band values
  
  		//this loops goes through each band in B (Z())
  		//	masked (or valid) pixels from that band are averaged and the average is stored in p
  		size_t k;
  		for (size_t i = 0; i < Z(); i++){							//for each band
  			band_index(temp, i);									//get the band image and store it in temp
  			k = 0;													//initialize the band_value index to zero
  			for (size_t j = 0; j < XY; j++){						//loop through temp, averaging valid pixels
  				if (mask == NULL || mask[j] != 0){
  					band_values[k] = temp[j];				//store the value in the band_values array
  					k++;											//increment the band_values index
  				}
  			}
  			std::sort(band_values.begin(), band_values.end());		//sort all of the values in the band
  			m[i] = band_values[ count/2 ];							//store the center value in the array
  			if(PROGRESS) progress = (double)(i+1) / Z() * 100;		//update the progress counter
  		}
  		free(temp);
  		return true;
  	}
  
  	/// Crop a region of the image and save it to a new file.
  
  	/// @param outfile is the file name for the new cropped image
  	/// @param x0 is the lower-left x pixel coordinate to be included in the cropped image
  	/// @param y0 is the lower-left y pixel coordinate to be included in the cropped image
  	/// @param x1 is the upper-right x pixel coordinate to be included in the cropped image
  	/// @param y1 is the upper-right y pixel coordinate to be included in the cropped image
  	bool crop(std::string outfile, unsigned long long x0,
  								   unsigned long long y0,
  								   unsigned long long x1,
  								   unsigned long long y1,
  								   unsigned long long b0,
  								   unsigned long long b1,
  								   bool PROGRESS = false){
  
  		//calculate the new number of samples, lines, and bands
  		unsigned long long samples = x1 - x0 + 1;
  		unsigned long long lines = y1 - y0 + 1;
  		unsigned long long bands = b1 - b0 + 1;
  
  		//calculate the size of a single band
  		unsigned long long L = samples * lines * sizeof(T);
  
  		//allocate space for a single band
  		T* temp = (T*)malloc(L);
  
  		//create an output stream to store the output file
  		std::ofstream out(outfile.c_str(), std::ios::binary);
  
  		//calculate the distance required to jump from the end of one band to the beginning of another
  		unsigned long long jumpb = X() * (Y() - lines) * sizeof(T);
  
  		//calculate the distance required to jump from the end of one line to the beginning of another
  		unsigned long long jumpl = (X() - samples) * sizeof(T);
  
  		//seek to the start of the cropped region in the input file
  		file.seekg( (b0 * X() * Y() + y0 * X() + x0) * sizeof(T), std::ios::beg);
  
  		//for each band
  		for (unsigned long long z = b0; z <= b1; z++)
  		{
  			//std::cout<<z<<std::endl;
  			for (unsigned long long y = 0; y < lines; y++)
  			{
  				file.read((char *)(temp + y * samples), sizeof(T) * samples);
  				file.seekg(jumpl, std::ios::cur);    //go to the next band
  
  				if(PROGRESS) progress = (double)((z - b0) * lines + y + 1) / ((b1 - b0 + 1) * lines) * 100;
  			}
  			out.write(reinterpret_cast<const char*>(temp), L);   //write slice data into target file
  			file.seekg(jumpb, std::ios::cur);
  		}
  		free(temp);
  
  		return true;
  	}
  
  	///Crop out several subimages and assemble a new image from these concatenated subimages
  
  	/// @param outfile is the file name for the output image
  	/// @param sx is the width of each subimage
  	/// @param sy is the height of each subimage
  	/// @mask is the mask used to define subimage positions extracted from the input file
  	void subimages(std::string outfile, size_t sx, size_t sy, unsigned char* mask, bool PROGRESS = false){
  
  		size_t N = nnz(mask);									//get the number of subimages
  		T* dst = (T*) malloc(N * sx * sy * sizeof(T));			//allocate space for a single band of the output image
  		memset(dst, 0, N*sx*sy*sizeof(T));						//initialize the band image to zero
  
  		std::ofstream out(outfile, std::ios::binary);			//open a file for writing
  
  		T* src = (T*) malloc(X() * Y() * sizeof(T));
  
  		for(size_t b = 0; b < Z(); b++){						//for each band
  			band_index(src, b);									//load the band image
  			size_t i = 0;										//create an image index and initialize it to zero
  			size_t n = 0;
  			while(n < N){										//for each subimage
  				if(mask[i]){									//if the pixel is masked, copy the surrounding pixels into the destination band
  					size_t yi = i / X();						//determine the y position of the current pixel
  					size_t xi = i - yi * X();					//determine the x position of the current pixel
  					if( xi > sx/2 && xi < X() - sx/2 &&			//if the subimage is completely within the bounds of the original image
  						yi > sy/2 && yi < Y() - sy/2){
  						size_t cx = xi - sx/2;					//calculate the corner position for the subimage
  						size_t cy = yi - sy/2;
  						for(size_t syi = 0; syi < sy; syi++){					//for each line in the subimage
  							size_t src_i = (cy + syi) * X() + cx;
  							//size_t dst_i = syi * (N * sx) + n * sx;
  							size_t dst_i = (n * sy + syi) * sx;
  							memcpy(&dst[dst_i],  &src[src_i], sx * sizeof(T));	//copy one line from the subimage to the destination image
  						}
  						n++;
  					}
  				}
  				i++;
  				if(PROGRESS) progress = (double)( (n+1) * (b+1) ) / (N * Z()) * 100;
  			}//end while n
  			out.write((const char*)dst, N * sx * sy * sizeof(T));			//write the band to memory
  		}
  		free(dst);												//free memory
  		free(src);
  	}
  
  	/// Remove a list of bands from the ENVI file
  
  	/// @param outfile is the file name for the output hyperspectral image (with trimmed bands)
  	/// @param b is an array of bands to be eliminated
  	void trim(std::string outfile, std::vector<size_t> band_array, bool PROGRESS = false){
  
  		std::ofstream out(outfile.c_str(), std::ios::binary);	//open the output file for writing
  		file.seekg(0, std::ios::beg);							//move to the beginning of the input file
  
  		size_t XY = X() * Y();						//calculate the number of elements in a band
  		size_t XYb = XY * sizeof(T);				//calculate the number of bytes in a band
  		T* temp = (T*)malloc(XYb);					//allocate space to store a band
  
  		size_t i = 0;								//store the first index into the band array
  
  		for(size_t b = 0; b < Z(); b++){			//for each band
  			if(b != band_array[i]){					//if this band is not trimmed
  				file.read((char*)temp, XYb);		//read the band
  				out.write((char*)temp, XYb);		//output the band
  			}
  			else{
  				file.seekg(XYb, std::ios::cur);		//otherwise, skip the band
  				i++;
  			}
  			if(PROGRESS) progress = (double)(b+1) / (double) Z() * 100;
  		}
  		free(temp);									//free the scratch space for the band
  	}
  
  	/// Combine two BSQ images along the Y axis
  
  	/// @param outfile is the combined file to be output
  	/// @param infile is the input file stream for the image to combine with this one
  	/// @param Sx is the size of the second image along X
  	/// @param Sy is the size of the second image along Y
  	/// @param offset is a shift (negative or positive) in the combined image to the left or right
  	void combine(std::string outfile, bsq<T>* C, long long xp, long long yp, bool PROGRESS = false){
  		std::ofstream out(outfile.c_str(), std::ios::binary);	//open the output file for writing
  		file.seekg(0, std::ios::beg);								//move to the beginning of both files
  		C->file.seekg(0, std::ios::beg);
  
  		size_t S[2];				//size of the output band image
  		size_t p0[2];				//position of the current image in the output
  		size_t p1[2];				//position of the source image in the output
  
  		hsi<T>::calc_combined_size(xp, yp, C->X(), C->Y(), S[0], S[1], p0[0], p0[1], p1[0], p1[1]);	//calculate the image placement parameters
  
  		size_t line_bytes = X() * sizeof(T);
  		size_t band_bytes = X() * Y() * sizeof(T);
  		T* cur = (T*)malloc(X() * Y() * sizeof(T));					//allocate space for a band of the current image
  
  		size_t line_src_bytes = C->X() * sizeof(T);
  		size_t band_src_bytes = C->X() * C->Y() * sizeof(T);
  		T* src = (T*)malloc(C->X() * C->Y() * sizeof(T));			//allocate space for a band of the source image
  
  		size_t line_dst_bytes = S[0] * sizeof(T);
  		size_t band_dst_bytes = S[0] * S[1] * sizeof(T);
  		T* dst = (T*)malloc(band_dst_bytes);						//allocate space for a band of the destination image
  		memset(dst, 0, band_dst_bytes);								//set all values to zero (0) in the destination image
  
  		for(size_t b = 0; b < Z(); b++){							//for each band in both images
  			file.read((char*)cur, band_bytes);						//read a band from the current image
  			C->file.read((char*)src, band_src_bytes);					//read a band from the source image
  			for(size_t y = 0; y < Y(); y++)
  				memcpy( &dst[ (p0[1]+y) * S[0] + p0[0] ], &cur[ y * X() ], line_bytes);		//copy the line from the current to the destination image
  				//memset( &dst[ (p0[1]+y) * S[0] + p0[0] ], 0, line_dst_bytes);
  			for(size_t y = 0; y < C->Y(); y++)
  				memcpy( &dst[ (p1[1]+y) * S[0] + p1[0] ], &src[ y * C->X() ], line_src_bytes);	//copy the line from the source to the destination image
  			out.write((char*)dst, band_dst_bytes);														//write the combined image to an output file
  			if(PROGRESS) progress = (double)(b + 1) / (double) Z() * 100;
  		}
  		out.close();
  	}
  
  	/// Append an image to this one along the band dimension
  	void append(std::string outfile, bsq<T>* C, bool PROGRESS = false) {
  		std::ofstream out(outfile.c_str(), std::ios::binary);	//open the output file for writing
  		file.seekg(0, std::ios::beg);							//move to the beginning of both files
  		C->file.seekg(0, std::ios::beg);
  
  		if (PROGRESS) progress = 0;
  		out << file.rdbuf();									//copy the data from this ENVI file
  		if (PROGRESS) progress = (double)(Z() + 1) / (double)(Z() + C->Z()) * 100;
  		out << C->file.rdbuf();									//copy the data from the appending file
  		if (PROGRESS) progress = 100;
  		out.close();
  	}
  
  	/// Convolve the given band range with a kernel specified by a vector of coefficients.
  
  	/// @param outfile is an already open stream to the output file
  	/// @param C is an array of coefficients
  	/// @param start is the band to start processing (the first coefficient starts here)
  	/// @param nbands is the number of bands to process
  	/// @param center is the index for the center coefficient for the kernel (used to set the wavelengths in the output file)
  
  	void convolve(std::ofstream& out, std::vector<double> C, size_t start, size_t end, unsigned char* mask = NULL, bool PROGRESS = false){
  		size_t nbands = end - start + 1;
  		size_t XY = X() * Y();										//calculate the number of values in a band
  		size_t XYb = XY * sizeof(T);								//calculate the size of a band (frame) in bytes
  
  		file.seekg(XYb * start, std::ios::beg);						//move to the beginning of the 'start' band
  
  		size_t nframes = C.size();									//get the number of bands that the kernel spans
  		std::deque<T*> frame(nframes, NULL);						//create an array to store pointers to each frame
  		for(size_t f = 0; f < nframes; f++){						//for each frame
  			frame[f] = (T*)malloc(XYb);								//allocate space for the frame
  			file.read((char*)frame[f], XYb);						//load the frame
  		}
  
  		T* outband = (T*)malloc(XYb);								//allocate space for the output band
  
  		//Implementation: In order to minimize reads from secondary storage, each band is only loaded once into the 'frame' deque.
  		//					When a new band is loaded, the last band is popped, a new frame is copied to the pointer, and it is
  		//					re-inserted into the deque.
  		for(size_t b = 0; b < nbands; b++){											//for each band
  			memset(outband, 0, XYb);												//set the output band to zero (0)
  			size_t c, xy;
  			double coeff;
  			for(c = 0; c < nframes; c++){									//for each frame (corresponding to each coefficient)
  				coeff = C[c];
  				for(xy = 0; xy < XY; xy++){									//for each pixel
  					if(mask == NULL || mask[xy]){
  						outband[xy] += (T)(coeff * frame[c][xy]);			//calculate the contribution of the current frame (scaled by the corresponding coefficient)
  					}
  				}
  			}
  			out.write((char*)outband, XYb);							//output the band
  			file.read((char*)frame[0], XYb);						//read the next band
  			frame.push_back(frame.front());							//put the first element in the back
  			frame.pop_front();										//pop the first element
  			if(PROGRESS) progress = (double)(b+1) / (double)nbands * 100;
  		}
  	}
  
  	/// Performs a single convolution and saves it to an output file
  
  	/// @param outfile is the convolved file to be output
  	/// @param C is an array of coefficients
  	/// @param start is the band to start processing (the first coefficient starts here)
  	/// @param nbands is the number of bands to process
  	void convolve(std::string outfile, std::vector<double> C, size_t start, size_t end, unsigned char* mask = NULL, bool PROGRESS = false){
  		std::ofstream out(outfile.c_str(), std::ios::binary);		//open the output file for writing
  		convolve(out, C, start, end, mask, PROGRESS);						//start the convolution
  		out.close();
  	}
  
  	/// Performs a set of convolutions and chains the results together in a single file
  
  	/// @param outfile is the convolved file to be output
  	/// @param C is an array containing an array of coefficients for each kernel
  	/// @param start is the list of start bands for each kernel
  	/// @param end is the list of end bands for each kernel
  	void convolve(std::string outfile, std::vector< std::vector<double> > C, std::vector<size_t> start, std::vector<size_t> end, unsigned char* mask = NULL, bool PROGRESS = false){
  		std::ofstream out(outfile.c_str(), std::ios::binary);		//open the output file for writing
  
  		size_t K = C.size();										//get the number of kernels
  		for(size_t k = 0; k < K; k++){
  			size_t b0 = start[k];									//calculate the range of the convolution
  			size_t b1 = end[k];
  			convolve(out, C[k], b0, b1, mask, PROGRESS);					//perform the convolution with the current kernel in the given range
  		}
  		out.close();
  	}
  
  	/// Approximate the spectral derivative of the image
  
  	void deriv(std::string outfile, size_t d, size_t order, const std::vector<double> w = std::vector<double>(), unsigned char* mask = NULL, bool PROGRESS = false){
  		std::ofstream out(outfile.c_str(), std::ios::binary);		//open the output file for writing
  
  		size_t XY = X() * Y();										//calculate the number of values in a band
  		size_t XYb = XY * sizeof(T);								//calculate the size of a band (frame) in bytes
  		size_t B = Z();
  		file.seekg(0, std::ios::beg);								//move to the beginning of the file
  
  		size_t N = order + d;									//approximating a derivative requires order + d samples
  		std::deque<T*> frame(N, NULL);						//create an array to store pointers to each frame
  		for(size_t f = 0; f < N; f++){						//for each frame
  			frame[f] = (T*)malloc(XYb);								//allocate space for the frame
  			file.read((char*)frame[f], XYb);						//load the frame
  		}
  
  		T* outband = (T*)malloc(XYb);								//allocate space for the output band
  
  		//Implementation: In order to minimize reads from secondary storage, each band is only loaded once into the 'frame' deque.
  		//					When a new band is loaded, the last band is popped, a new frame is copied to the pointer, and it is
  		//					re-inserted into the deque.
  		size_t mid = (size_t)(N / 2);							//calculate the mid point of the kernel
  		size_t iw;													//index to the first wavelength used to evaluate the derivative at this band
  		for(size_t b = 0; b < B; b++){								//for each band
  			if(b < mid)												//calculate the first wavelength used to evaluate the derivative at this band
  				iw = 0;
  			else if(b > B - (N - mid + 1))
  				iw = B - N;
  			else{
  				iw = b - mid;
  				file.read((char*)frame[0], XYb);						//read the next band
  				frame.push_back(frame.front());							//put the first element in the back
  				frame.pop_front();										//pop the first element
  			}
  			std::vector<double> w_pts(w.begin() + iw, w.begin() + iw + N);			//get the wavelengths corresponding to each sample
  			std::vector<double> C = diff_coefficients(w[b], w_pts, d);					//get the optimal sample weights
  
  			memset(outband, 0, XYb);												//set the output band to zero (0)
  			for(size_t c = 0; c < N; c++){									//for each frame (corresponding to each coefficient)
  				for(size_t xy = 0; xy < XY; xy++){									//for each pixel
  					if(mask == NULL || mask[xy]){
  						outband[xy] += (T)(C[c] * frame[c][xy]);			//calculate the contribution of the current frame (scaled by the corresponding coefficient)
  					}
  				}
  			}
  			out.write((char*)outband, XYb);							//output the band
  			if(PROGRESS) progress = (double)(b+1) / (double)B * 100;
  		}
  
  	}	//end deriv
  
  	bool multiply(std::string outname, double v, unsigned char* mask = NULL, bool PROGRESS = false){
  		unsigned long long B = Z();									//calculate the number of bands
  		unsigned long long XY = X() * Y();							//calculate the number of pixels in a band
  		unsigned long long S = XY * sizeof(T);						//calculate the number of bytes in a band
  
  		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
  		std::string headername = outname + ".hdr";					//the header file name
  
  		T * c;														//pointer to the current image
  		c = (T*)malloc( S );										//allocate memory for the band image
  
  		for(unsigned long long j = 0; j < B; j++){					//for each band
  			band_index(c, j);										//load the current band
  			for(unsigned long long i = 0; i < XY; i++){				//for each pixel
  				if(mask == NULL || mask[i])							//if the pixel is masked
  					c[i] *= (T)v;										//perform the multiplication
  			}
  			target.write(reinterpret_cast<const char*>(c), S);		//write normalized data into destination
  
  			if(PROGRESS) progress = (double)(j+1) / B * 100;		//update the progress
  		}
  
  		free(c);													//free the band
  		target.close();												//close the output file
  		return true;
  	}
  
  	bool add(std::string outname, double v, unsigned char* mask = NULL, bool PROGRESS = false){
  		unsigned long long B = Z();									//calculate the number of bands
  		unsigned long long XY = X() * Y();							//calculate the number of pixels in a band
  		unsigned long long S = XY * sizeof(T);						//calculate the number of bytes in a band
  
  		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
  		std::string headername = outname + ".hdr";					//the header file name
  
  		T * c;														//pointer to the current image
  		c = (T*)malloc( S );										//allocate memory for the band image
  
  		for(unsigned long long j = 0; j < B; j++){					//for each band
  			band_index(c, j);										//load the current band
  			for(unsigned long long i = 0; i < XY; i++){				//for each pixel
  				if(mask == NULL || mask[i])							//if the pixel is masked
  					c[i] += (T)v;										//perform the multiplication
  			}
  			target.write(reinterpret_cast<const char*>(c), S);		//write normalized data into destination
  
  			if(PROGRESS) progress = (double)(j+1) / B * 100;		//update the progress
  		}
  
  		free(c);													//free the band
  		target.close();												//close the output file
  		return true;
  	}
  
  
  	/// Close the file.
  	bool close(){
  		file.close();
  		return true;
  	}
  
  	};
  }
  
  #endif