Blame view

tira/image/image.h 21.8 KB
ce6381d7   David Mayerich   updating to TIRA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
  #ifndef STIM_IMAGE_H
  #define STIM_IMAGE_H
  
  #ifdef _WIN32
  #undef max
  #endif
  
  #include <vector>
  #include <iostream>
  #include <limits>							//use limits and remove the MIN and MAX macros
  #include <typeinfo>
  #include <fstream>
  #include <cstring>
  #include <stim/image/CImg.h>
  
  
  #include <stim/parser/filename.h>
  
  namespace stim{
  /// This static class provides the STIM interface for loading, saving, and storing 2D images.
  /// Data is stored in an interleaved (BIP) format (default for saving and loading is RGB).
  
  template <class T>
  class image{
  
  	T* img;										//pointer to the image data (interleaved RGB for color)
  	size_t R[3];
  	bool interleaved = true;					//by default the data is interleaved
  
  	inline size_t X() const { return R[1]; }
  	inline size_t Y() const { return R[2]; }
  	inline size_t C() const { return R[0]; }
  
  	void init(){								//initializes all variables, assumes no memory is allocated
  		memset(R, 0, sizeof(size_t) * 3);		//set the resolution and number of channels to zero
  		img = NULL;
  	}
  
  	void unalloc(){								//frees any resources associated with the image
  		if(img)	free(img);						//if memory has been allocated, free it
  	}
  
  
  	void clear(){								//clears all image data
  		unalloc();								//unallocate previous memory
  		init();									//re-initialize the variables
  	}
  
  	void allocate(){
  		unalloc();
  		img = (T*) malloc( sizeof(T) * R[0] * R[1] * R[2] );	//allocate memory
  		if (img == NULL) {
  			std::cout << "stim::image ERROR - failed to allocate memory for image" << std::endl;
  			exit(1);
  		}
  	}
  
  	void allocate(size_t x, size_t y, size_t c){	//allocate memory based on the resolution
  		R[0] = c; R[1] = x; R[2] = y;				//set the resolution
  		allocate();									//allocate memory
  	}
  
  	inline size_t idx(size_t x, size_t y, size_t c = 0) const {
  		return y * R[0] * R[1] + x * R[0] + c;
  	}
  
  	/// Returns the value for "white" based on the dynamic range (assumes white is 1.0 for floating point images)
  	T white(){
  		if (typeid(T) == typeid(double) || typeid(T) == typeid(float))
  			return (T)1.0;
  		else
  			return std::numeric_limits<T>::max();
  	}
  
  public:
  
  	size_t bytes() { return size() * sizeof(T); }
  
  	/// Default constructor - creates an empty image object
  	image(){ init(); }							//initialize all variables to zero, don't allocate any memory
  
  	/// Constructor with a filename - loads the specified file
  	image(std::string filename){				//constructor initialize the image with an image file
  		init();
  		load(filename);
  	}
  
  	/// Create a new image from scratch given a number of samples and channels
  	image(size_t x, size_t y = 1, size_t c = 1){
  		init();
  		allocate(x, y, c);
  	}
  
  	/// Create a new image with the data given in 'data'
  	image(T* data, size_t x, size_t y, size_t c = 1){
  		init();
  		allocate(x, y, c);
  		memcpy(img, data, bytes());
  	}
  
  	/// Copy constructor - duplicates an image object
  	image(const stim::image<T>& I){
  		init();
  		allocate(I.X(), I.Y(), I.C());
  		memcpy(img, I.img, bytes());
  	}
  
  	/// Destructor - clear memory
  	~image(){
  		free(img);
  	}
  
  	stim::image<T>& operator=(const stim::image<T>& I){
  		if(&I == this)									//handle self-assignment
  			return *this;
  		init();
  		allocate(I.X(), I.Y(), I.C());
  		memcpy(img, I.img, bytes());
  		return *this;
  	}
  
  	//determines if a filename represents a valid file format that can be loaded/saved
  	static bool test_filename(std::string f) {
  		stim::filename fname = f;
  		std::string ext = fname.extension();
  		if (ext == "bmp" ||
  			ext == "jpg" ||
  			ext == "png" ||
  			ext == "pbm" ||
  			ext == "tif" )
  			return true;
  		else
  			return false;
  	}
  
  	//save a Netpbm file
  	void load_netpbm(std::string filename) {
  		std::ifstream infile(filename.c_str(), std::ios::in | std::ios::binary);		//open an output file
  		if (!infile) {
  			std::cout << "Error opening input file in image::load_netpbm()" << std::endl;
  			exit(1);
  		}
  
  		size_t nc;													//allocate space for the number of channels
  		char format[2];												//allocate space to hold the image format tag
  		infile.read(format, 2);										//read the image format tag
  		infile.seekg(1, std::ios::cur);								//skip the newline character
  
  		if (format[0] != 'P') {
  			std::cout << "Error in image::load_netpbm() - file format tag is invalid: " << format[0] << format[1] << std::endl;
  			exit(1);
  		}
  		if (format[1] == '5') nc = 1;								//get the number of channels from the format flag
  		else if (format[1] == '6') nc = 3;
  		else {
  			std::cout << "Error in image::load_netpbm() - file format tag is invalid: " << format[0] << format[1] << std::endl;
  			exit(1);
  		}
  
  		unsigned char c;								//stores a character
  		while (infile.peek() == '#') {					//if the next character indicates the start of a comment
  			while (true) {
  				c = infile.get();
  				if (c == 0x0A) break;
  			}
  		}
  
  		std::string sw;									//create a string to store the width of the image
  		while(true){
  			c = infile.get();							//get a single character
  			if (c == ' ') break;						//exit if we've encountered a space
  			sw.push_back(c);							//push the character on to the string
  		}
  		size_t w = atoi(sw.c_str());					//convert the string into an integer
  
  		std::string sh;
  		while (true) {
  			c = infile.get();
  			if (c == 0x0A) break;
  			sh.push_back(c);
  		}
  
  		while (true) {									//skip the maximum value
  			c = infile.get();
  			if (c == 0x0A) break;
  		}
  		size_t h = atoi(sh.c_str());					//convert the string into an integer
  
  		allocate(w, h, nc);													//allocate space for the image
  		unsigned char* buffer = (unsigned char*)malloc(w * h * nc);			//create a buffer to store the read data
  		infile.read((char*)buffer, size());									//copy the binary data from the file to the image
  		infile.close();														//close the file
  		for (size_t n = 0; n < size(); n++) img[n] = (T)buffer[n];			//copy the buffer data into the image
  		free(buffer);														//free the buffer array
  	}
  	
  
  	//Copy N data points from source to dest, casting while doing so
  	template<typename S, typename D>
  	void type_copy(S* source, D* dest, size_t N) {
  		if (typeid(S) == typeid(D))						//if both types are the same
  			memcpy(dest, source, N * sizeof(S));		//just use a memcpy
  		for (size_t n = 0; n < N; n++)					//otherwise, iterate through each element
  			dest[n] = (D)source[n];							//copy and cast
  	}
  	/// Load an image from a file
  	void load(std::string filename){
  		//Use CImg to load the file
  		cimg_library::CImg<T> cimg(filename.c_str());	//create a CImg object for the image file
  
  		set_noninterleaved(cimg.data(), cimg.width(), cimg.height(), cimg.spectrum());
  	}
  
  
  
  	//save a Netpbm file
  	void save_netpbm(std::string filename) {
  		std::ofstream outfile(filename.c_str(), std::ios::out | std::ios::binary);		//open an output file
  		if(!outfile) {
  			std::cout << "Error generating output file in image::save_netpbm()" << std::endl;
  			exit(1);
  		}
  		if (sizeof(T) != 1) {
  			std::cout << "Error in image::save_netpbm() - data type must be 8-bit integer." << std::endl;
  			exit(1);
  		}
  		std::string format;
  		if (channels() == 1) outfile << "P5" << (char)0x0A;			//output P5 if the file is grayscale
  		else if (channels() == 3) outfile << "P6" << (char)0x0A;		//output P6 if the file is color
  		else {
  			std::cout << "Error in image::save_netpbm() - data must be grayscale or RGB." << std::endl;
  			exit(1);
  		}
  		size_t w = width();
  		size_t h = height();
  		outfile << w << " " << h << (char)0x0A;			//save the width and height
  		outfile << "255" << (char)0x0A;								//output the maximum value
  		outfile.write((const char*)img, size());			//write the binary data
  		outfile.close();
  	}
  
  	//save a file
  	void save(std::string filename){
  		stim::filename file(filename);
  		if (file.extension() == "raw" || file.extension() == "") {
  			std::ofstream outfile(filename.c_str(), std::ios::binary);
  			outfile.write((char*)img, sizeof(T) * R[0] * R[1] * R[2]);
  			outfile.close();
  		}
  		else {
  			cimg_library::CImg<T> cimg((unsigned int)R[1], (unsigned int)R[2], 1, (unsigned int)R[0]);
  			get_noninterleaved(cimg.data());
  			cimg.save(filename.c_str());
  		}
  	}
  
  	/// Returns an image cast to the specified format
  	template<typename U>
  	image<U> convert() {
  		
  		image<U> new_image(R[1], R[2], R[0]);					//create a new image with the destination data type
  
  		size_t ni = R[0] * R[1] * R[2];							//calculate the number of data points in the image
  
  		double inmax = (std::numeric_limits<T>::max)();				//get the maximum value for the input image
  		double outmax = (std::numeric_limits<U>::max)();				//get the maximum value for the output image
  		for (size_t i = 0; i < ni; i++) {							//for each pixel in the image
  			if (img[i] > outmax) new_image(i) = outmax;			//if the source pixel is greater than the maximum destination pixel, set the output to maximum
  			else new_image(i) = img[i];							//otherwise, copy the source value and cast it to the destination value		
  		}
  		return new_image;
  	}
  
  	void set_interleaved(T* buffer, size_t width, size_t height, size_t channels){
  		allocate(width, height, channels);
  		memcpy(img, buffer, bytes());
  	}
  
  	//create an image from an interleaved buffer
  	void set_interleaved_rgb(T* buffer, size_t width, size_t height){
  		set_interleaved(buffer, width, height, 3);
  	}
  
  	void set_interleaved_bgr(T* buffer, size_t width, size_t height){
  		allocate(width, height, 3);
  		T value;
  		size_t i;
  		for(size_t c = 0; c < C(); c++){								//copy directly
  			for(size_t y = 0; y < Y(); y++){
  				for(size_t x = 0; x < X(); x++){
  					i = y * X() * C() + x * C() + (2-c);
  					value = buffer[i];
  					img[idx(x, y, c)] = value;
  				}
  			}
  		}
  	}
  
  	void set_interleaved(T* buffer, size_t width, size_t height){
  		set_interleaved_rgb(buffer, width, height);
  	}
  
  	//copies data in the given channel order as a non-interleaved image
  	void set_noninterleaved(T* data, size_t width, size_t height, size_t chan) {
  		allocate(width, height, chan);
  
  		//for each channel
  		for (size_t y = 0; y < Y(); y++) {
  			for (size_t x = 0; x < X(); x++) {
  				for (size_t c = 0; c < C(); c++) {
  					img[idx(x, y, c)] = data[c * Y() * X() + y * X() + x];
  				}
  			}
  		}
  	}
  
  	void get_interleaved_bgr(T* data){
  		//for each channel
  		T* source;
  		if (C() == 3) {
  			source = img;														//if the image has 3 channels, interleave all three
  		}
  		else if (C() == 4) {
  			source = img + X() * Y();											//if the image has 4 channels, skip the alpha channel
  		}
  		else {
  			throw std::runtime_error("ERROR: a BGR image must be 3 or 4 channels");	//throw an error if any other number of channels is provided
  		}
  		for(size_t y = 0; y < Y(); y++){
  			for(size_t x = 0; x < X(); x++){
  				for(size_t c = 0; c < 3; c++){
  					data[y * X() * 3 + x * 3 + (2-c)] = source[y*3*R[1] + x*3 + c];
  				}
  			}
  		}
  	}
  
  	void get_interleaved_rgb(T* data){
  		memcpy(data, img, bytes());
  	}
  
  	//copies data in the given channel order as a non-interleaved image
  	void get_noninterleaved(T* data){
  		//for each channel
  		for(size_t y = 0; y < Y(); y++){
  			for(size_t x = 0; x < X(); x++){
  				for(size_t c = 0; c < C(); c++){
  					data[c * Y() * X() + y * X() + x] = img[idx(x, y, c)];
  				}
  			}
  		}
  	}
  
  	/// Return an image representing a specified channel
  	/// @param c is the channel to be returned
  	image<T> channel(size_t c) const {		
  		image<T> r(X(), Y(), 1);				//create a new image
  		for(size_t x = 0; x < X(); x++){
  			for(size_t y = 0; y < Y(); y++){
  				r.img[r.idx(x, y, 0)] = img[idx(x, y, c)];
  			}
  		}
  		return r;
  	}
  
  	/// Returns an std::vector containing each channel as a separate image
  	std::vector< image<T> > split() const {
  		std::vector< image<T> > r;			//create an image array
  		r.resize(C());						//create images for each channel
  
  		for (size_t c = 0; c < C(); c++) {	//for each channel
  			r[c] = channel(c);				//copy the channel image to the array
  		}
  		return r;
  	}
  
  	/// Merge a series of single-channel images into a multi-channel image
  	void merge(std::vector< image<T> >& list) {
  		size_t x = list[0].width();				//calculate the size of the image
  		size_t y = list[0].height();
  		allocate(x, y, list.size());			//re-allocate the image
  		for (size_t c = 0; c < list.size(); c++)		//for each channel
  			set_channel(list[c].channel(0).data(), c);	//insert the channel into the output image
  	}
  
  	T& operator()(size_t x, size_t y, size_t c = 0){
  		return img[idx(x, y, c)];
  	}
  
  	/// This function returns a pixel reference based on a 1D index into the image
  	T& operator()(size_t i) {
  		return img[i];
  	}
  
  	/// Set all elements in the image to a given scalar value
  
  	/// @param v is the value used to set all values in the image
  	void set_all(T v) {														//set all elements of the image to a given value v
  		size_t N = size();
  		for (size_t n = 0; n < N; n++) img[n] = v;
  	}
  	image<T> operator=(T v){
  		set_all(v);
  		return *this;
  	}
  
  	/// invert the image, given a specified maximum value (ex. maxval = 255, I' = 255 - I)
  	/*image<T> invert(T maxval) {
  		image<T> result(width(), height(), channels());		//create a new image
  		size_t N = size();									//get the number of elements in the image
  		for (size_t n = 0; n < N; n++)
  			result.data()[n] = maxval - img[n];				//perform the inversion and save the result to the new image
  		return result;
  	}*/
  
  	/// Stretch the contrast of the image such that the minimum and maximum intensity match the given values
  	image<T> stretch(T low, T high) {
  		T maxval = maxv();
  		T minval = minv();
  		image<T> result = *this;				//create a new image for output
  		if (maxval == minval) {					//if the minimum and maximum values are the same, return an image composed of low
  			result = low;
  			return result;
  		}	
  		
  		size_t N = size();						//get the number of values in the image
  		T range = maxval - minval;			//calculate the current range of the image
  		T desired_range = high - low;		//calculate the desired range of the image
  		for (size_t n = 0; n < N; n++) {		//for each element in the image
  			result.data()[n] = desired_range * (img[n] - minval) / range + low;
  		}
  		return result;
  	}
  
  	/// Add a border of width w with the given value around the image
  	/// @param w specifies the total size of the border
  	/// @param T is the pixel value (all channels will be the same)
  	image<T> border(size_t w, T value = 0) {
  		image<T> result(width() + w * 2, height() + w * 2, channels());						//create an output image
  		result = value;														//assign the border value to all pixels in the new image
  		for (size_t y = 0; y < height(); y++) {								//for each pixel in the original image
  			for (size_t x = 0; x < width(); x++) {
  				size_t n = (y + w) * (width() + w * 2) + x + w;				//calculate the index of the corresponding pixel in the result image
  				size_t n0 = idx(x,y);										//calculate the index for this pixel in the original image
  				result.data()[n] = img[n0];									// copy the original image to the result image afer the border area
  			}
  		}
  		return result;
  	}
  
  	/// Adds curcular padding for the specified number of pixels - in this case replicating the boundary pixels
  	image<T> pad_replicate(size_t p) {
  		image<T> result(width() + p * 2, height() + p * 2, channels());						//create an output image
  		result = 0;
  		//result = value;														//assign the border value to all pixels in the new image
  		for (size_t y = 0; y < height(); y++) {								//for each pixel in the original image
  			for (size_t x = 0; x < width(); x++) {
  				size_t n = (y + p) * (width() + p * 2) + x + p;				//calculate the index of the corresponding pixel in the result image
  				size_t n0 = idx(x, y);										//calculate the index for this pixel in the original image
  				result.data()[n] = img[n0];									// copy the original image to the result image afer the border area
  			}
  		}
  		size_t l = p;
  		size_t r = p + width() - 1;
  		size_t t = p;
  		size_t b = p + height() - 1;
  		for (size_t y = 0; y < p; y++) for (size_t x = l; x <= r; x++) result(x, y) = result(x, t);						//pad the top
  		for (size_t y = b + 1; y < result.height(); y++) for (size_t x = l; x <= r; x++) result(x, y) = result(x, b);	//pad the bottom
  		for (size_t y = t; y <= b; y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, y);						//pad the left
  		for (size_t y = t; y <= b; y++) for (size_t x = r+1; x < result.width(); x++) result(x, y) = result(r, y);		//pad the right
  		for (size_t y = 0; y < t; y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, t);						//pad the top left
  		for (size_t y = 0; y < t; y++) for (size_t x = r+1; x < result.width(); x++) result(x, y) = result(r, t);		//pad the top right
  		for (size_t y = b+1; y < result.height(); y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, b);		//pad the bottom left
  		for (size_t y = b+1; y < result.height(); y++) for (size_t x = r + 1; x < result.width(); x++) result(x, y) = result(r, b);		//pad the bottom right
  		return result;
  	}
  
  	/// Copy the given data to the specified channel
  
  	/// @param c is the channel number that the data will be copied to
  	/// @param buffer is a pointer to the image to be copied to channel c
  
  	void set_channel(T* buffer, size_t c){
  		size_t x, y;
  		for(y = 0; y < Y(); y++){
  			for(x = 0; x < X(); x++){
  				img[idx(x, y, c)] = buffer[y * X() + x];
  			}
  		}
  	}
  
  	/// Set the specified channel to a constant value
  
  	/// @param c is the channel number that the data will be copied to
  	/// @param buffer is a pointer to the image to be copied to channel c
  
  	void set_channel(T val, size_t c) {
  		size_t x, y;
  		for (y = 0; y < Y(); y++) {
  			for (x = 0; x < X(); x++) {
  				img[idx(x, y, c)] = val;
  			}
  		}
  	}
  
  	size_t channels() const{
  		return C();
  	}
  
  	size_t width() const{
  		return X();
  	}
  
  	size_t height() const{
  		return Y();
  	}
  
  	T* data(){
  		return img;
  	}
  
  	//returns the size (number of values) of the image
  	size_t size(){ return C() * X() * Y(); }
  
  	/// Returns the number of nonzero values
  	size_t nnz(){
  
  		size_t N = X() * Y() * C();
  
  		size_t nz = 0;
  		for(size_t n = 0; n < N; n++)
  			if(img[n] != 0) nz++;
  
  		return nz;	//return the number of nonzero pixels
  
  	}
  
  	//this function returns indices of pixels that have nonzero values
  	std::vector<size_t> sparse_idx(){
  
  		std::vector<size_t> s;				//allocate an array
  		s.resize(nnz());					//allocate space in the array
  
  		size_t N = size();
  		//size_t C = channels();
  
  		//T* ptr = img.data();				//get a pointer to the image data
  
  		size_t i = 0;
  		for(size_t n = 0; n < N; n++){
  			if(img[n] != 0){
  				s[i] = n;
  				i++;
  			}
  		}
  
  		return s;			//return the index list
  	}
  
  
  	/// Returns the maximum pixel value in the image
  	T maxv(){
  		T max_val = img[0];				//initialize the maximum value to the first one
  		size_t N = size();	//get the number of pixels
  
  		for (size_t n=0; n<N; n++){		//for every value
  
  			if (img[n] > max_val){			//if the value is higher than the current max
  				max_val = img[n];
  			}
  		}
  		return max_val;
  	}
  
  	/// Returns the maximum pixel value in the image
  	T minv(){
  		T min_val = img[0];				//initialize the maximum value to the first one
  		size_t N = size();	//get the number of pixels
  
  		for (size_t n=0; n<N; n++){		//for every value
  			if (img[n] < min_val){			//if the value is higher than the current max
  				min_val = img[n];
  			}
  		}
  
  		return min_val;
  	}
  
  	/// Invert an image by calculating I1 = alpha - I0, where alpha is the maximum image value
  	image<T> invert(T white_val){
  		size_t N = size();						//calculate the total number of values in the image
  		image<T> r(X(), Y(), C());				//allocate space for the resulting image
  		for(size_t n = 0; n < N; n++)
  			r.img[n] = white_val - img[n];		//perform the inversion
  
  		return r;								//return the inverted image
  	}
  
  	image<T> crop(size_t x0, size_t y0, size_t w, size_t h){
  		image<T> result(w, h, C());								//create the output cropped image
  
  		size_t srci;
  		size_t dsti;
  		size_t line_bytes = w * C();							//calculate the number of bytes in a line
  		for (size_t yi = 0; yi < h; yi++) {						//for each row in the cropped image
  			srci = (y0 + yi) * X() * C() + x0 * C();			//calculate the source index
  			dsti = yi * w * C();								//calculate the destination index
  			memcpy(&result.img[dsti], &img[srci], line_bytes);	//copy the data
  		}
  		return result;
  	}
  
  	//crop regions given by an array of 1D index values
  	std::vector< image<T> > crop_idx(size_t w, size_t h, std::vector<size_t> idx) {
  		std::vector< image<T> > result(idx.size());										//create an array of image files to return
  		for (size_t i = 0; i < idx.size(); i++) {										//for each specified index point
  			size_t y = idx[i] / X();													//calculate the y coordinate from the 1D index (center of ROI)
  			size_t x = idx[i] - y * X();												//calculate the x coordinate (center of ROI)
  			y -= w / 2;																	//update x and y values to reflect the lower corner of the ROI
  			x -= h / 2;
  			result[i] = crop(x, y, w, h);												//get the cropped image and store it in the result array
  		}
  		return result;
  	}
  
  	//operator functions
  	image<T> operator+(image<T> rhs) {
  		size_t N = size();						//calculate the total number of values in the image
  		image<T> r(X(), Y(), C());				//allocate space for the resulting image
  		for (size_t n = 0; n < N; n++)
  			r.img[n] = img[n] + rhs.img[n];		//perform the inversion
  		return r;								//return the inverted image
  	}
  
  	image<T> srgb2lab(){
  		std::cout<<"ERROR stim::image::srgb2lab - function has been broken, re-implement."<<std::endl;
  		exit(1);
  	}
  
  	image<T> convolve2(image<T> mask){
  		std::cout<<"ERROR stim::image::convolve2 - function has been broken, and shouldn't really be in here."<<std::endl;
  		exit(1);
  	}
  
  
  	image<T> rotate(float angle, float cx, float cy){
  		std::cout<<"ERROR stim::image::rotate - function has been broken, and shouldn't really be in here."<<std::endl;
  		exit(1);
  	}
  
  	// leila's code for non_interleaving data in 3D
  	//create an data set from an interleaved buffer
  	void set_interleaved3(T* buffer, size_t width, size_t height, size_t depth, size_t channels = 3){
  		std::cout<<"ERROR stim::image::set_interleaved3 - stim::image no longer supports 3D images."<<std::endl;
  		exit(1);
  	}
  
  	/// Casting operator, casts every value in an image to a different data type V
  	template<typename V>
  	operator image<V>() {
  		image<V> r(X(), Y(), C());					//create a new image
  		std::copy(img, img + size(), r.data());		//copy and cast the data
  		return r;									//return the new image
  	}
  
  };
  
  };		//end namespace stim
  
  
  #endif