Blame view

tira/optics/planewave.h 14.4 KB
ce6381d7   David Mayerich   updating to TIRA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
  #ifndef TIRA_PLANEWAVE_H
  #define TIRA_PLANEWAVE_H
  
  #include <string>
  #include <sstream>
  #include <cmath>
  
  #include "../math/vec3.h"
  #include "../math/quaternion.h"
  #include "../math/constants.h"
  #include "../math/plane.h"
  #include <complex>
  
  
  namespace tira{
  	namespace optics{
  
  
  		/// evaluate the scalar field produced by a plane wave at a point (x, y, z)
  
  		/// @param x is the x-coordinate of the point
  		/// @param y is the y-coordinate of the point
  		/// @param z is the z-coordinate of the point
  		/// @param A is the amplitude of the plane wave, specifically the field at (0, 0, 0)
  		/// @param kx is the k-vector component in the x direction
  		/// @param ky is the k-vector component in the y direction
  		/// @param kz is the k-vector component in the z direction
  		template<typename T>
  		std::complex<T> planewave_scalar(T x, T y, T z, std::complex<T> A, T kx, T ky, T kz){
  			T d = x * kx + y * ky + z * kz;						//calculate the dot product between k and p = (x, y, z) to find the distance p is along the propagation direction
  			std::complex<T> di = std::complex<T>(0, d);		//calculate the phase shift that will have to be applied to propagate the wave distance d
  			return A * exp(di);									//multiply the phase term by the amplitude at (0, 0, 0) to propagate the wave to p
  		}
  
  		/// evaluate the scalar field produced by a plane wave at several positions
  
  		/// @param field is a pre-allocated block of memory that will store the complex field at all points
  		/// @param N is the number of field values to be evaluated
  		/// @param x is a set of x coordinates defining positions within the field (NULL implies that all values are zero)
  		/// @param y is a set of y coordinates defining positions within the field (NULL implies that all values are zero)
  		/// @param z is a set of z coordinates defining positions within the field (NULL implies that all values are zero)
  		/// @param A is the amplitude of the plane wave, specifically the field at (0, 0, 0)
  		/// @param kx is the k-vector component in the x direction
  		/// @param ky is the k-vector component in the y direction
  		/// @param kz is the k-vector component in the z direction
  		template<typename T>
  		void cpu_planewave_scalar(std::complex<T>* field, size_t N, T* x, T* y = NULL, T* z = NULL, std::complex<T> A = 1.0, T kx = 0.0, T ky = 0.0, T kz = 0.0){
  			T px, py, pz;
  			for(size_t i = 0; i < N; i++){										// for each element in the array
  				(x == NULL) ? px = 0 : px = x[i];								// test for NULL values
  				(y == NULL) ? py = 0 : py = y[i];
  				(z == NULL) ? pz = 0 : pz = z[i];
  
  				field[i] = planewave_scalar(px, py, pz, A, kx, ky, kz);			// call the single-value plane wave function
  			}
  		}
  
  
  template<typename T>
  class planewave{
  
  protected:
  
  	cvec3<T> m_k;					//k-vector, pointed in propagation direction with magnitude |k| = tau / lambda = 2pi / lambda
  	cvec3<T> m_E;					//amplitude (for a scalar plane wave, only E0[0] is used)
  
  	/// Bend a plane wave via refraction, given that the new propagation direction is known
  	CUDA_CALLABLE planewave<T> bend(vec3<T> v) const {
  
  		vec3<T> k_real(m_k.get(0).real(), m_k.get(1).real(), m_k.get(2).real());			//force the vector to be real (can only refract real directions)
  
  		vec3<T> kn_hat = v.direction();					//normalize the new k
  		vec3<T> k_hat = k_real.direction();				//normalize the current k
  
  		planewave<T> new_p;								//create a new plane wave
  
  		T k_dot_kn = k_hat.dot(kn_hat);					//if kn is equal to k or -k, handle the degenerate case
  
  		//if k . n < 0, then the bend is a reflection
  		if(k_dot_kn < 0) k_hat = -k_hat;				//flip k_hat
  
  		if(k_dot_kn == -1){
  			new_p.m_k = -m_k;
  			new_p.m_E = m_E;
  			return new_p;
  		}
  		else if(k_dot_kn == 1){
  			new_p.m_k = m_k;
  			new_p.m_E = m_E;
  			return new_p;
  		}
  
  		vec3<T> r = k_hat.cross(kn_hat);					//compute the rotation vector
  		T theta = asin(r.len());							//compute the angle of the rotation about r
  		quaternion<T> q;									//create a quaternion to capture the rotation
  		q.CreateRotation(theta, r.direction());	
  		matrix_sq<T, 3> R = q.toMatrix3();
  		vec3< std::complex<T> > E(m_E.get(0), m_E.get(1), m_E.get(2));
  		vec3< std::complex<T> > E0n = R * E;					//apply the rotation to E0
  		//new_p.m_k = kn_hat * kmag();
  		//new_p.m_E = E0n;
  		new_p.m_k[0] = kn_hat[0] * kmag();
  		new_p.m_k[1] = kn_hat[1] * kmag();
  		new_p.m_k[2] = kn_hat[2] * kmag();
  
  		new_p.m_E[0] = E0n[0];
  		new_p.m_E[1] = E0n[1];
  		new_p.m_E[2] = E0n[2];
  
  
  		return new_p;
  	}
  
  public:
  
  	
  	
  	///constructor: create a plane wave propagating along k
  	CUDA_CALLABLE planewave(std::complex<T> kx, std::complex<T> ky, std::complex<T> kz,
  		std::complex<T> Ex, std::complex<T> Ey, std::complex<T> Ez) {
  
  		m_k = cvec3<T>(kx, ky, kz);
  		m_E = cvec3<T>(Ex, Ey, Ez);
  		force_orthogonal();
  	}
  
  	CUDA_CALLABLE planewave() : planewave(0, 0, 1, 1, 0, 0) {}
  
  	//copy constructor
  	CUDA_CALLABLE planewave(const planewave& other) {
  		m_k = other.m_k;
  		m_E = other.m_E;
  	}
  
  	/// Assignment operator
  	CUDA_CALLABLE planewave& operator=(const planewave& rhs) {
  		m_k = rhs.m_k;
  		m_E = rhs.m_E;
  
  		return *this;
  	}
  
  	/// Forces the k and E vectors to be orthogonal
  	CUDA_CALLABLE void force_orthogonal() {
  
  		/*if (m_E.norm2() == 0) return;
  
  		cvec3<T> k_dir = m_k.direction();							//calculate the normalized direction vectors for k and E
  		cvec3<T> E_dir = m_E.direction();
  		cvec3<T> side = k_dir.cross(E_dir);						//calculate a side vector for projection
  		cvec3<T> side_dir = side.direction();					//normalize the side vector
  		E_dir = side_dir.cross(k_dir);								//calculate the new E vector direction
  		T E_norm = m_E.norm2();
  		m_E = E_dir * E_norm;								//apply the new direction to the existing E vector
  		*/
  	}
  
  	CUDA_CALLABLE cvec3<T> k() {
  		return m_k;
  	}
  
  	CUDA_CALLABLE cvec3<T> E() {
  		return m_E;
  	}
  
  	CUDA_CALLABLE cvec3<T> evaluate(T x, T y, T z) {
  		
  		std::complex<T> k_dot_r = m_k[0] * x + m_k[1] * y + m_k[2] * z;
  		std::complex<T> e_k_dot_r = std::exp(std::complex<T>(0, 1) * k_dot_r);
  
  		cvec3<T> result;
  		result[0] = m_E[0] * e_k_dot_r;
  		result[1] = m_E[1] * e_k_dot_r;
  		result[2] = m_E[2] * e_k_dot_r;
  		return result;
  	}
  
  	CUDA_CALLABLE T kmag() const {
  		return std::sqrt(std::real(m_k.get(0) * std::conj(m_k.get(0)) + m_k.get(1) * std::conj(m_k.get(1)) + m_k.get(2) * std::conj(m_k.get(2))));
  	}
  
  	/// Return a plane wave with the origin translated by (x, y, z)
  	CUDA_CALLABLE planewave<T> translate(T x, T y, T z) const {
  		planewave<T> result;
  		cvec3<T> k = m_k;
  		result.m_k = k;
  		std::complex<T> k_dot_r = k[0] * (-x) + k[1] * (-y) + k[2] * (-z);
  		std::complex<T> exp_k_dot_r = std::exp(std::complex<T>(0.0, 1.0) * k_dot_r);
  
  		cvec3<T> E = m_E;
  		result.m_E[0] = E[0] * exp_k_dot_r;
  		result.m_E[1] = E[1] * exp_k_dot_r;
  		result.m_E[2] = E[2] * exp_k_dot_r;
  		return result;
  	}
  
  	///multiplication operator: scale E0
      CUDA_CALLABLE planewave<T>& operator* (const T& rhs) {
  		m_E = m_E * rhs;
  		return *this;
  	}
  
  	///return a plane wave with the applied refractive index (scales the k-vector by the input)
  	CUDA_CALLABLE planewave<T> ri(T n) {
  		planewave<T> result;
  		result.m_E = m_E;
  		result.m_k = m_k * n;
  		return result;
  	}
  	CUDA_CALLABLE planewave<T> refract(vec3<T> kn) const {
  		return bend(kn);
  	}
  
  	/*CUDA_CALLABLE T lambda() const{
  		return stim::TAU / k.len();
  	}
  
  	CUDA_CALLABLE T kmag() const{
  		return k.len();
  	}
  
  	CUDA_CALLABLE vec< complex<T> > E(){
  		return E0;
  	}
  
  	CUDA_CALLABLE vec<T> kvec(){
  		return k;
  	}
  
  	/// calculate the value of the field produced by the plane wave given a three-dimensional position
  	CUDA_CALLABLE vec< complex<T> > pos(T x, T y, T z){
  		return pos( stim::vec<T>(x, y, z) );
  	}
  
  	CUDA_CALLABLE vec< complex<T> > pos(vec<T> p = vec<T>(0, 0, 0)){
  		vec< complex<T> > result;
  
  		T kdp = k.dot(p);
  		complex<T> x = complex<T>(0, kdp);
  		complex<T> expx = exp(x);
  
  		result[0] = E0[0] * expx;
  		result[1] = E0[1] * expx;
  		result[2] = E0[2] * expx;
  
  		return result;
  	}
  
  	//scales k based on a transition from material ni to material nt
  	CUDA_CALLABLE planewave<T> n(T ni, T nt){
  		return planewave<T>(k * (nt / ni), E0);
  	}
  
  	
  
  	/// Calculate the result of a plane wave hitting an interface between two refractive indices
  
  	/// @param P is a plane representing the position and orientation of the surface
  	/// @param n0 is the refractive index outside of the surface (in the direction of the normal)
  	/// @param n1 is the refractive index inside the surface (in the direction away from the normal)
  	/// @param r is the reflected component of the plane wave
  	/// @param t is the transmitted component of the plane wave
  	void scatter(stim::plane<T> P, T n0, T n1, planewave<T> &r, planewave<T> &t){
  		scatter(P, n1/n0, r, t);
  	}*/
  
  	/// Calculate the scattering result when nr = n1/n0
  
  	/// @param P is a plane representing the position and orientation of the surface
  	/// @param r is the ratio n1/n0
  	/// @param n1 is the refractive index inside the surface (in the direction away from the normal)
  	/// @param r is the reflected component of the plane wave
  	/// @param t is the transmitted component of the plane wave
  	
  	int scatter(vec3<T> plane_normal, vec3<T> plane_position, std::complex<T> nr, planewave<T>& r, planewave<T>& t) {
  		
  		if (m_k[0].imag() != 0.0 || m_k[1].imag() != 0.0 || m_k[2].imag() != 0) {
  			std::cout << "ERROR: cannot scatter a plane wave with an imaginary k-vector." << std::endl;
  		}
  
  		vec3<T> ki(m_k[0].real(), m_k[1].real(), m_k[2].real());	//force the current k vector to be real
  		vec3<T> kr;
  		cvec3<T> kt, Ei, Er, Et;
  
  		plane_normal = plane_normal.direction();
  		vec3<T> k_dir = ki.direction();								//calculate the direction of the incident plane wave
  
  		//int facing = plane_face(k_dir, plane_normal);				//determine which direction the plane wave is coming in
  		if (k_dir.dot(plane_normal) > 0) {							//if the wave hits the back of the plane, invert the plane and nr
  			std::cout << "ERROR: k-vector intersects the wrong side of the boundary." << std::endl;
  			return -1;												//the plane wave is impacting the wrong side of the surface
  		}
  
  		//use Snell's Law to calculate the transmitted angle
  		T cos_theta_i = k_dir.dot(-plane_normal);					//compute the cosine of theta_i
  		T sin_theta_i = std::sqrt(1 - cos_theta_i * cos_theta_i);
  		T theta_i = acos(cos_theta_i);								//compute theta_i
  
  		//handle the degenerate case where theta_i is 0 (the plane wave hits head-on)
  		if (theta_i == 0) {
  			std::complex<T> rp = (1.0 - nr) / (1.0 + nr);			//compute the Fresnel coefficients
  			std::complex<T> tp = 2.0 / (1.0 + nr);
  
  			kr = -ki;												//the reflection vector is the inverse of the incident vector
  			kt[0] = ki[0] * nr;
  			kt[1] = ki[1] * nr;
  			kt[2] = ki[2] * nr;
  			
  			Er = m_E * rp;											//compute the E vectors based on the Fresnel coefficients
  			Et = m_E * tp;
  
  			//calculate the phase offset based on the plane positions
  			T phase_r = plane_position.dot(ki - kr);
  			std::complex<T> phase_t =
  				plane_position[0] * (ki[0] - kt[0]) +
  				plane_position[1] * (ki[1] - kt[1]) +
  				plane_position[2] * (ki[2] - kt[2]);
  		}
  		else {
  			T cos_theta_r = cos_theta_i;
  			T sin_theta_r = sin_theta_i;
  			T theta_r = theta_i;
  
  			std::complex<T> sin_theta_t = (1.0/nr) * sin(theta_i);		//compute the sine of theta_t using Snell's law
  			std::complex<T> cos_theta_t = std::sqrt(1.0 - sin_theta_t * sin_theta_t);
  			std::complex<T> theta_t = asin(sin_theta_t);				//compute the cosine of theta_t
  
  			//Define the basis vectors for the calculation (plane of incidence)
  			vec3<T> z_hat = -plane_normal;
  			vec3<T> plane_perpendicular = plane_normal * k_dir.dot(plane_normal);
  			vec3<T> y_hat = (k_dir - plane_perpendicular).direction();
  			vec3<T> x_hat = y_hat.cross(z_hat);
  
  			//calculate the k-vector magnitudes
  			T ki_mag = ki.norm2();
  			T kr_mag = ki_mag;
  			std::complex<T> kt_mag = ki_mag * nr;
  
  			//calculate the k vector directions
  			vec3<T> ki_dir = y_hat * sin_theta_i + z_hat * cos_theta_i;
  			vec3<T> kr_dir = y_hat * sin_theta_r - z_hat * cos_theta_r;
  			cvec3<T> kt_dir;
  			kt_dir[0] = y_hat[0] * sin_theta_t + z_hat[0] * cos_theta_t;
  			kt_dir[1] = y_hat[1] * sin_theta_t + z_hat[1] * cos_theta_t;
  			kt_dir[2] = y_hat[2] * sin_theta_t + z_hat[2] * cos_theta_t;
  
  			//calculate the k vectors
  			ki = ki_dir * ki_mag;
  			kr = kr_dir * kr_mag;
  			kt = kt_dir * kt_mag;
  
  			//calculate the Fresnel coefficients
  			std::complex<T> rs = std::sin(theta_t - theta_i) / std::sin(theta_t + theta_i);
  			std::complex<T> rp = std::tan(theta_t - theta_i) / std::tan(theta_t + theta_i);
  			std::complex<T> ts = (2.0 * (sin_theta_t * cos_theta_i)) / std::sin(theta_t + theta_i);
  			std::complex<T> tp = ((2.0 * sin_theta_t * cos_theta_i) / (std::sin(theta_t + theta_i) * std::cos(theta_t - theta_i)));
  
  			//calculate the p component directions for each E vector
  			vec3<T> Eip_dir = y_hat * cos_theta_i - z_hat * sin_theta_i;
  			vec3<T> Erp_dir = y_hat * cos_theta_r + z_hat * sin_theta_r;
  			cvec3<T> Etp_dir;
  			Etp_dir[0] = y_hat[0] * cos_theta_t - z_hat[0] * sin_theta_t;
  			Etp_dir[1] = y_hat[1] * cos_theta_t - z_hat[1] * sin_theta_t;
  			Etp_dir[2] = y_hat[2] * cos_theta_t - z_hat[2] * sin_theta_t;
  
  			//calculate the s and t components of each E vector
  			std::complex<T> Ei_s = m_E.dot(x_hat);
  			std::complex<T> Ei_p = m_E.dot(Eip_dir);
  			std::complex<T> Er_s = rs * Ei_s;
  			std::complex<T> Er_p = rp * Ei_p;
  			std::complex<T> Et_s = ts * Ei_s;
  			std::complex<T> Et_p = tp * Ei_p;
  
  			//calculate the E vector for each plane wave
  			Er[0] = Erp_dir[0] * Er_p + x_hat[0] * Er_s;
  			Er[1] = Erp_dir[1] * Er_p + x_hat[1] * Er_s;
  			Er[2] = Erp_dir[2] * Er_p + x_hat[2] * Er_s;
  
  			Et[0] = Etp_dir[0] * Et_p + x_hat[0] * Et_s;
  			Et[1] = Etp_dir[1] * Et_p + x_hat[1] * Et_s;
  			Et[2] = Etp_dir[2] * Et_p + x_hat[2] * Et_s;
  		}
  
  
  		//calculate the phase offset based on the plane positions
  		T phase_r = plane_position.dot(ki - kr);
  		std::complex<T> phase_t =
  			plane_position[0] * (ki[0] - kt[0]) +
  			plane_position[1] * (ki[1] - kt[1]) +
  			plane_position[2] * (ki[2] - kt[2]);
  
  		//apply the phase offset
  		Er = Er * std::exp(std::complex<T>(0, 1) * phase_r);
  		Et = Et * std::exp(std::complex<T>(0, 1) * phase_t);
  
  		//generate the reflected and transmitted waves
  		r = planewave<T>(kr[0], kr[1], kr[2], Er[0], Er[1], Er[2]);
  		t = planewave<T>(kt[0], kt[1], kt[2], Et[0], Et[1], Et[2]);
  
  		return 0;
  	}
  
  	std::string str()
  	{
  		std::stringstream ss;
  		ss << "k: " << m_k << std::endl;
  		ss << "E: " << m_E << std::endl;
  		return ss.str();
  	}
  };					//end planewave class
  }					//end namespace optics
  }					//end namespace tira
  
  template <typename T>
  std::ostream& operator<<(std::ostream& os, tira::optics::planewave<T> p)
  {
      os<<p.str();
      return os;
  }
  
  #endif