Blame view

stim/envi/agilent_binary.h 7.65 KB
25d8d20b   David Mayerich   added FFT support...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
  //make sure that this header file is only loaded once
  #ifndef STIM_AGILENT_BINARY_H
  #define STIM_AGILENT_BINARY_H
  
  #include <string>
  #include <fstream>
  
  //CUDA
  #ifdef CUDA_FOUND
  	#include <cuda_runtime.h>
  	#include "cufft.h"
  	#include <stim/cuda/cudatools/error.h>
  #endif
  
  namespace stim{
  
  template<typename T>
  class agilent_binary{
  
  protected:
  	std::string fname;
  	T* ptr;
  	size_t R[3];
  	static const size_t header = 1020;
  	double Z[2];
  
  public:
  	size_t size(){
  		return (size_t)R[0] * (size_t)R[1] * (size_t)R[2];
  	}
  
  	size_t bytes(){
  		return size() * sizeof(T);
  	}
  	void alloc(){
  		ptr = (T*) malloc(bytes());
  	}
  	void alloc(short x, short y, short z){
  		R[0] = x;
  		R[1] = y;
  		R[2] = z;
  		alloc();
  	}
  
  	void deep_copy(agilent_binary<T>* dst, const agilent_binary<T>* src){
  		dst->alloc(src->R[0], src->R[1], src->R[2]);			//allocate memory
  		memcpy(dst->ptr, src->ptr, bytes());					//copy the data
  		memcpy(dst->Z, src->Z, sizeof(double) * 2);				//copy the data z range
  	}
  
  	agilent_binary(){
  		memset(R, 0, sizeof(short) * 3);				//set the resolution to zero
  		ptr = NULL;
  	}
  
  	/// Constructor with resolution
  	agilent_binary(short x, short y, short z){
  		alloc(x, y, z);
  	}
  
  	/// Constructor with filename
  	agilent_binary(std::string filename){
  		ptr = NULL;
  		load(filename);
  	}
  	
  	/// Copy constructor
  	agilent_binary(const agilent_binary<T> &obj){
  		deep_copy(this, &obj);
  	}
  
  	agilent_binary<T>& operator=(const agilent_binary<T> rhs){
  		if(this != &rhs){								//check for self-assignment
  			deep_copy(this, &rhs);						//make a deep copy
  		}
  		return *this;									//return the result
  	}
  
  	~agilent_binary(){
  		free(ptr);
  	}
  
  	void load(std::string filename){
  		if(ptr != NULL) free(ptr);						//if memory has been allocated, free it
  
  		fname = filename;						//save the filename
  
  		short x, y, z;
  
  		std::ifstream infile(fname, std::ios::binary);				//open the input file
  		infile.seekg(9, std::ios::beg);				//seek past 9 bytes from the beginning of the file
  
  		infile.read((char*)(&z), 2);							//read two bytes of data (the number of samples is stored as a 16-bit integer)
  
  		infile.seekg(13, std::ios::cur);				//skip another 13 bytes
  		infile.read((char*)(&x), 2);				//read the X and Y dimensions
  		infile.read((char*)(&y), 2);
  
  		infile.seekg(header, std::ios::beg);			//seek to the start of the data
  
  		alloc(x, y, z);
  		ptr = (T*) malloc(bytes());							//allocate space for the data
  		infile.read((char*)ptr, bytes());				//read the data		
  		infile.close();
  	}
  
  	void save(std::string filename){
  		std::ofstream outfile(filename, std::ios::binary);			//create an output file
  
  		char zero = 0;
  		for(size_t i = 0; i < 9; i++) outfile.write(&zero, 1);		//write 9 zeros
  		outfile.write((char*)&R[0], 2);
  		for(size_t i = 0; i < 13; i++) outfile.write(&zero, 1);		//write 13 zeros
  		outfile.write((char*)&R[1], 2);
  		outfile.write((char*)&R[2], 2);
  		for(size_t i = 0; i < 992; i++) outfile.write(&zero, 1);		//write 992 zeros
  		//char zerovec[1020];
  		//outfile.write((char*)zerovec, 1020);
  
  		size_t b = bytes();
  		outfile.write((char*)ptr, b);							//write the data to the output file
  		outfile.close();
  	}
  
  	stim::envi_header create_header(){
  		stim::envi_header header;
  		header.samples = R[0];
  		header.lines = R[1];
  		header.bands = R[2];
  
  		double z_delta = (double)(Z[1] - Z[0]) / (double)(R[2] - 1);
  		header.wavelength.resize(R[2]);
  		for(size_t i = 0; i < R[2]; i++)
  			header.wavelength[i] = i * z_delta + Z[0];
  
  		return header;
  	}
  
  	/// Calculate the absorbance spectrum from the transmission spectrum given a background
  	void absorbance(stim::agilent_binary<T>* background){
  		size_t N = size();											//calculate the number of values to be ratioed
  		if(N != background->size()){
  			std::cerr<<"ERROR in stim::agilent_binary::absorbance() - transmission image size doesn't match background"<<std::endl;
  			exit(1);
  		}
  		for(size_t i = 0; i < N; i++)
  			ptr[i] = -log10(ptr[i] / background->ptr[i]);
  	}
  
  #ifdef CUDA_FOUND
  	/// Perform an FFT and return a binary file with bands in the specified range
  	agilent_binary<T> fft(float band_min, float band_max){
  		auto total_start = std::chrono::high_resolution_clock::now();
  
  		auto start = std::chrono::high_resolution_clock::now();
  		T* cpu_data = (T*) malloc( bytes() );										//allocate space for the transposed data
  		for(size_t b = 0; b < R[2]; b++){
  			for(size_t x = 0; x < R[0] * R[1]; x++){
  				cpu_data[x * R[2] + b] = ptr[b * R[0] * R[1] + x];
  			}
  		}
  		auto end = std::chrono::high_resolution_clock::now();
  		std::chrono::duration<double> diff = end-start;
         // std::cout << "Transpose data: " << diff.count() << " s\n";
  
  		start = std::chrono::high_resolution_clock::now();
  		cufftHandle plan;															//allocate space for a cufft plan
  		cufftReal* gpu_data;														//create a pointer to the data
  		size_t batch = R[0] * R[1];													//calculate the batch size (X * Y)
  		HANDLE_ERROR(cudaMalloc((void**)&gpu_data, bytes()));						//allocate space on the GPU
  		HANDLE_ERROR(cudaMemcpy(gpu_data, cpu_data, bytes(), cudaMemcpyHostToDevice));	//copy the data to the GPU
  		cufftComplex* gpu_fft;
  		HANDLE_ERROR(cudaMalloc((void**)&gpu_fft, R[0] * R[1] * (R[2]/2 + 1) * sizeof(cufftComplex)));
  		end = std::chrono::high_resolution_clock::now();
  		diff = end-start;
  		//std::cout << "Allocate/copy: " << diff.count() << " s\n";
  
  		start = std::chrono::high_resolution_clock::now();
  		int N[1];					//create an array with the interferogram size (required for cuFFT input)
  		N[0] = R[2];				//set the only array value to the interferogram size
  		if(cufftPlanMany(&plan, 1, N, NULL, 1, R[2], NULL, 1, R[2], CUFFT_R2C, batch) != CUFFT_SUCCESS){
  			std::cout<<"cuFFT Error: unable to create 1D plan."<<std::endl;
  			exit(1);
  		}
  		end = std::chrono::high_resolution_clock::now();
  		diff = end-start;
  		//std::cout << "Create a plan: " << diff.count() << " s\n";
  
  		start = std::chrono::high_resolution_clock::now();
  		if (cufftExecR2C(plan, gpu_data, gpu_fft) != CUFFT_SUCCESS){		//execute the (implicitly forward) transform
  			std::cout<<"CUFFT error: ExecR2C Forward failed";
  			exit(1);
  		}
  		end = std::chrono::high_resolution_clock::now();
  		diff = end-start;
  		//std::cout << "Perform FFT: " << diff.count() << " s\n";
  
  		start = std::chrono::high_resolution_clock::now();
  		std::complex<T>* cpu_fft = (std::complex<T>*) malloc( R[0] * R[1] * (R[2]/2+1) * sizeof(std::complex<T>) );
  		HANDLE_ERROR(cudaMemcpy(cpu_fft, gpu_fft, R[0] * R[1] * (R[2]/2+1) * sizeof(cufftComplex), cudaMemcpyDeviceToHost));	//copy data from the host to the device
  
  		double int_delta = 0.00012656;									//interferogram sample spacing in centimeters
  		double int_length = int_delta * R[2];							//interferogram length in centimeters
  		double fft_delta = 1/int_length;								//spectrum spacing (in inverse centimeters, wavenumber
  
  		size_t start_i = std::ceil(band_min / fft_delta);				//calculate the first band to store
  		size_t size_i = std::floor(band_max / fft_delta) - start_i;		//calculate the number of bands to store
  		size_t end_i = start_i + size_i;								//last band number
  		agilent_binary<T> result(R[0], R[1], size_i);
  		result.Z[0] = start_i * fft_delta;								//set the range for the FFT result
  		result.Z[1] = end_i * fft_delta;
  
  		for(size_t b = start_i; b < end_i; b++){
  			for(size_t x = 0; x < R[0] * R[1]; x++){
  				result.ptr[(b - start_i) * R[0] * R[1] + x] = abs(cpu_fft[x * (R[2]/2+1) + b]);
  			}
  		}
  		end = std::chrono::high_resolution_clock::now();
  		diff = end-start;
  		//std::cout << "Transpose/Crop: " << diff.count() << " s\n";
  
  		auto total_end = std::chrono::high_resolution_clock::now();
  		diff = total_end-total_start;
  
  		cufftDestroy(plan);
  		HANDLE_ERROR(cudaFree(gpu_data));
  		HANDLE_ERROR(cudaFree(gpu_fft));
  		free(cpu_data);
  		free(cpu_fft);
  
  		return result;
  	}
  #endif
  
  };
  
  }
  
  #endif