Blame view

stim/biomodels/centerline.h 11.5 KB
7f1ab3c2   Pavel Govyadinov   fixed problems wi...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
  #ifndef JACK_CENTERLINE_H

  #define JACK_CENTERLINE_H

  

  #include <stdlib.h>

  #include <vector>

  #include <stim/math/vec3.h>

  #include <stim/structures/kdtree.cuh>

  

  namespace stim {

  

  	/// we always assume that one centerline has a flow direction even it actually does not have. Also, we allow loop centerline

  	/// NOTE: centerline is not derived from std::vector<stim::vec3<T>> class!!!

  	template<typename T>

  	class centerline {

  

  	private:

  		size_t n;								// number of points on the centerline, can be zero if NULL

  

  		// update length information at each point (distance from starting point) starting from index "start"

  		void update_L(size_t start = 0) {

  			L.resize(n);

  

  			if (start == 0) {

  				L[0] = 0.0f;

  				start++;

  			}

  

  			stim::vec3<T> dir;					// temp direction vector for calculating length between two points

  			for (size_t i = start; i < n; i++) {

  				dir = C[i] - C[i - 1];			// calculate the certerline extending direction

  				L[i] = L[i - 1] + dir.len();	// addition

  			}

  		}

  

  	protected:

  		std::vector<stim::vec3<T> > C;			// points on the centerline

  		std::vector<T> L;						// stores the integrated length along the fiber

  

  	public:

  		/// constructors

  		// empty constructor

  		centerline() {

  			n = 0;

  		}

  

  		// constructor that allocate memory

  		centerline(size_t s) {

  			n = s;

  			C.resize(s);		// allocate memory for points

  			L.resize(s);		// allocate memory for lengths

  

  			update_L();

  		}

  

  		// constructor that constructs a centerline based on a list of points

  		centerline(std::vector<stim::vec3<T> > rhs) {

  			n = rhs.size();						// get the number of points

  			C.resize(n);

  			for (size_t i = 0; i < n; i++)

  				C[i] = rhs[i];					// copy data

  			update_L();

  		}

  

  

  		/// vector operations

  		// add a new point to current centerline

  		void push_back(stim::vec3<T> p) {

  			C.push_back(p);

  			n++;								// increase the number of points

  			update_L(n - 1);

  		}

  

  		// insert a new point at specific location to current centerline

  		void insert(typename std::vector<stim::vec3<T> >::iterator pos, stim::vec3<T> p) {

  			C.insert(pos, p);									// insert a new point

  			n++;

  			size_t d = std::distance(C.begin(), pos);			// get the index

  			update_L(d);

  		}

  		// insert a new point at C[idx]

  		void insert(size_t idx, stim::vec3<T> p) {

  			n++;

  			C.resize(n);

  			for (size_t i = n - 1; i > idx; i--)				// move point location

  				C[i] = C[i - 1];

  			C[idx] = p;

  			update_L(idx);

  		}

  

  		// assign a point at specific location to current centerline

  		void assign(size_t idx, stim::vec3<T> p) {

  			C[idx] = p;

  			update_L(idx);

  		}

  

  		// erase a point at specific location on current centerline

  		void erase(typename std::vector<stim::vec3<T> >::iterator pos) {

  			C.erase(pos);										// erase a point

  			n--;

  			size_t d = std::distance(C.begin(), pos);			// get the index

  			update_L(d);

  		}

  		// erase a point at C[idx]

  		void erase(size_t idx) {

  			n--;

  			for (size_t i = idx; i < n; i++)

  				C[i] = C[i + 1];

  			C.resize(n);

  			update_L(idx);

  		}

  

  		// clear up all the points

  		void clear() {

  			C.clear();			// clear list

  			L.clear();			// clear length information

  			n = 0;				// set number to zero

  		}

  

  		// reverse current centerline in terms of points order

  		centerline<T> reverse() {

  			centerline<T> result = *this;

  

  			std::reverse(result.C.begin(), result.C.end());

  			result.update_L();

  

  			return result;

  		}

  

  		/// functions for reading centerline information

  		// return the number of points on current centerline

  		size_t size() {

  			return n;

  		}

  

  		// return the length

  		T length() {

  			return L.back();

  		}

  

  		// finds the index of the point closest to the length "l" on the lower bound

  		size_t findIdx(T l) {

  			for (size_t i = 1; i < L.size(); i++) {

  				if (L[i] > l)

  					return i - 1;

  			}

  

  			return L.size() - 1;

  		}

  

  		// get a position vector at the given length into the fiber (based on the pvalue), interpolate

  		stim::vec3<T> p(T l, size_t idx) {

  			T rate = (l - L[idx]) / (L[idx + 1] - L[idx]);

  			stim::vec3<T> v1 = C[idx];

  			stim::vec3<T> v2 = C[idx + 1];

  		

  			return (v1 + (v2 - v1) * rate);

  		}

  		// get a position vector at the given pvalue(pvalue[0.0f, 1.0f])

  		stim::vec3<T> p(T pvalue) {

  			// degenerated cases

  			if (pvalue <= 0.0f) return C[0];

  			if (pvalue >= 1.0f) return C.back();

  		

  			T l = pvalue * L.back();		// get the length based on the given pvalue

  			size_t idx = findIdx(l);

  			

  			return p(l, idx);				// interpolation

  		}

  

  		// get the normalized direction vector at point idx (average of the incoming and outgoing directions)

  		stim::vec3<T> d(size_t idx) {

  			if (n <= 1) return stim::vec3<T>(0.0f, 0.0f, 0.0f);		// if there is insufficient information to calculate the direction, return null

  			if (n == 2) return (C[1] - C[0]).norm();				// if there are only two points, the direction vector at both is the direction of the line segment

  			

  			// degenerate cases at two ends

  			if (idx == 0) return (C[1] - C[0]).norm();				// the first direction vector is oriented towards the first line segment

  			if (idx == n - 1) return (C[n - 1] - C[n - 2]).norm();	// the last direction vector is oriented towards the last line segment

  

  			// all other direction vectors are the average direction of the two joined line segments

  			stim::vec3<T> a = C[idx] - C[idx - 1];

  			stim::vec3<T> b = C[idx + 1] - C[idx];

  			stim::vec3<T> ab = a.norm() + b.norm();

  			return ab.norm();

  		}

  

  

  		/// arithmetic operations

  		// '=' operation

  		centerline<T> & operator=(centerline<T> rhs) {

  			n = rhs.n;

  			C = rhs.C;

  			L = rhs.L;

  

  			return *this;

  		}

  

  		// "[]" operation

  		stim::vec3<T> & operator[](size_t idx) {

  			return C[idx];

  		}

  

  		// "==" operation

  		bool operator==(centerline<T> rhs) const {

  

  			if (n != rhs.size())

  				return false;

  			else {

  				size_t num = rhs.size();

  				stim::vec3<T> tmp;			// weird situation that I can only use tmp instead of C itself in comparison

  				for (size_t i = 0; i < num; i++) {

  					stim::vec3<T> tmp = C[i];

  					if (tmp[0] != rhs[i][0] || tmp[1] != rhs[i][1] || tmp[2] != rhs[i][2])

  						return false;

  				}

  				return true;

  			}

  		}

  

  		// "+" operation

  		centerline<T> operator+(stim::vec3<T> p) const {

  			centerline<T> result(*this);

  			result.C.push_back(p);

  			result.n++;

  			result.update_L(n - 1);

  			

  			return result;

  		}

  		centerline<T> operator+(centerline<T> c) const {

  			centerline<T> result(*this);

  			size_t num1 = result.size();

  			size_t num2 = c.size();

  			for (size_t i = 0; i < num2; i++)

  				result.push_back(c[i]);

  			result.update_L(num1);

  

  			return result;

  		}

  

  		

  		/// advanced operation

  		// stitch two centerlines if possible (mutual-stitch and self-stitch)

  		static std::vector<centerline<T> > stitch(centerline<T> c1, centerline<T> c2, size_t end = 0) {

  			std::vector<centerline<T> > result;

  			centerline<T> new_centerline;

  			stim::vec3<T> new_vertex;

  			// ********** for Pavel **********

  			// ********** JACK thinks that ultimately we want it AUTOMATEDLY! **********

  

  			// check stitch case

  			if (c1 == c2) {		// self-stitch case

  				// ***** don't know how it works *****

  			}

  			else {				// mutual-stitch case

  				size_t num1 = c1.size();	// get the numbers of two centerlines

  				size_t num2 = c2.size();

  

  				T* reference = (T*)malloc(sizeof(T) * num1 * 3);	// c1 as reference set

  				T* query = (T*)malloc(sizeof(T) * num2 * 3);		// c2 as query set

  				for (size_t p = 0; p < num1; p++)					// read points

  					for (size_t d = 0; d < 3; d++)

  						reference[p * 3 + d] = c1[p][d];			// KDTREE is stilla close code, it has its own structure

  				for (size_t p = 0; p < num2; p++)					// read points

  					for (size_t d = 0; d < 3; d++)

  						query[p * 3 + d] = c2[p][d];

  

  				stim::kdtree<T, 3> kdt;

  				kdt.create(reference, num1, 5);						// create a tree based on reference set, max_tree_level is set to 5

  				

  				std::vector<size_t> index(num2);					// stores index results

  				std::vector<float> dist(num2);

  

  				kdt.search(query, num2, &index[0], &dist[0]);		// find the nearest neighbor in c1 for c2

  

  				// clear up

  				free(reference);

  				free(query);

  

  				std::vector<float>::iterator sm = std::min_element(dist.begin(), dist.end());	// find smallest distance

  				size_t id = std::distance(dist.begin(), sm);				// find the target index

  

  				size_t id1 = index[id];

  				size_t id2 = id;

  

  				// for centerline c1

  				bool flag = false;						// flag indicates whether it has already added the bifurcation point to corresponding new centerline

  				if (id1 == 0 || id1 == num1 - 1) { 		// splitting bifurcation is on the end

  					new_centerline = c1;

  					new_vertex = c2[id2];

  					if (id1 == 0) {

  						new_centerline.insert(0, new_vertex);

  						flag = true;

  					}

  					if (id1 == num1 - 1) {

  						new_centerline.push_back(new_vertex);

  						flag = true;

  					}

  

  					result.push_back(new_centerline);

  				}

  				else {									// splitting bifurcation is on the centerline

  					std::vector<centerline<T> > tmp_centerline = c1.split(id1);

  					result = tmp_centerline;

  				}

  

  				// for centerline c2

  				if (id2 == 0 || id2 == num2 - 1) {		// splitting bidurcation is on the end

  					new_centerline = c2;

  					if (flag)

  						result.push_back(new_centerline);

  					else {			// add the bifurcation point to this centerline

  						new_vertex = c1[id1];

  						if (id2 == 0) {

  							new_centerline.insert(0, new_vertex);

  							flag = true;

  						}

  						if (id2 == num2 - 1) {

  							new_centerline.push_back(new_vertex);

  							flag = true;

  						}

  

  						result.push_back(new_centerline);

  					}

  				}

  				else {									// splitting bifurcation is on the centerline

  					std::vector<centerline<T> > tmp_centerline = c2.split(id2);

  					result.push_back(tmp_centerline[0]);

  					result.push_back(tmp_centerline[1]);

  				}

  			}

  

  			return result;

  		}

  

  		// split current centerline at specific position

  		std::vector<centerline<T> > split(size_t idx) {

  			std::vector<centerline<T> > result;

  

  			// won't split

  			if (idx <= 0 || idx >= n - 1) {

  				result.resize(1);

  				result[0] = *this;				// return current centerline

  			}

  			// do split

  			else {

  				size_t n1 = idx + 1;			// vertex idx would appear twice

  				size_t n2 = n - idx;			// in total n + 1 points

  

  				centerline<T> tmp;				// temp centerline

  

  				result.resize(2);

  

  				for (size_t i = 0; i < n1; i++)	// first half

  					tmp.push_back(C[i]);

  				tmp.update_L();

  				result[0] = tmp;

  				tmp.clear();					// clear up for next computation

  

  				for (size_t i = 0; i < n2; i++)	// second half

  					tmp.push_back(C[i + idx]);

  				tmp.update_L();

  				result[1] = tmp;

  			}

  

  			return result;

  		}

  

  		// resample current centerline

  		centerline<T> resample(T spacing) {

  			

  			stim::vec3<T> dir;				// direction vector

  			stim::vec3<T> tmp;				// intermiate point to be added

  			stim::vec3<T> p1;				// starting point

  			stim::vec3<T> p2;				// ending point

  

  			centerline<T> result;

  

  			for (size_t i = 0; i < n - 1; i++) {

  				p1 = C[i];

  				p2 = C[i + 1];

  				

  				dir = p2 - p1;				// compute the direction of current segment

  				T seg_len = dir.len();

  

  				if (seg_len > spacing) {	// current segment can be sampled

  					for (T step = 0.0f; step < seg_len; step += spacing) {

  						tmp = p1 + dir * (step / seg_len);		// add new point

  						result.push_back(tmp);

  					}

  				}

  				else

  					result.push_back(p1);	// push back starting point

  			}

  			result.push_back(p2);			// push back ending point

  

  			return result;

  		}

  	};

  }

  

  #endif