Blame view

rts/rect.h 2.49 KB
f1402849   dmayerich   renewed commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
  #ifndef RTS_RECT_H
  #define RTS_RECT_H
  
  //enable CUDA_CALLABLE macro
  #include "rts/cuda_callable.h"
  #include "rts/vector.h"
  #include "rts/point.h"
  #include <iostream>
  
  namespace rts{
  
  //template for a rectangle class in ND space
  template <class T, int N>
  struct rect
  {
  	/*
  		C------------------>O
  		^                   ^
  		|                   |
  		Y                   |
  		|                   |
  		|                   |
  		A---------X-------->B
  	*/
  
  	/*T A[N];
  	T B[N];
  	T C[N];*/
  
  	rts::point<T, N> A;
  	rts::vector<T, N> X;
  	rts::vector<T, N> Y;
  
  
  	CUDA_CALLABLE rect()
  	{
  
  	}
  
  	CUDA_CALLABLE rect(point<T, N> a, point<T, N> b, point<T, N> c)
  	{
  
  		A = a;
  		X = b - a;
  		Y = c - a;
  
  	}
  
  	CUDA_CALLABLE rect(rts::point<T, N> pMin, rts::point<T, N> pMax, rts::vector<T, N> normal)
  	{
  
          //assign the corner point
          A = pMin;
  
          //compute the vector from pMin to pMax

          rts::vector<T, 3> v0;
          v0 = pMax - pMin;
  
          //compute the cross product of A and the plane normal
          rts::vector<T, 3> v1;
          v1 = v0.cross(normal);
  
  
          //calculate point B
          rts::point<T, 3> B;
          B = A + v0 * 0.5 + v1 * 0.5;
  
          //calculate point C
          rts::point<T, 3> C;
          C = A  + v0 * 0.5 - v1 * 0.5;
  
          //calculate X and Y
          X = B - A;
          Y = C - A;
  
  
  
  
  	}
  
  	/*CUDA_CALLABLE rect(rts::point<T, N> p, rts::vector<T, N> x, rts::vector<T, N> y, T sx, T sy)
  	{
  		//This constructor creates a rect given a position, orientation, and size
  		//	p	= center position of the rect
  		//	x	= x-axis for the rectangle
  		//	y	= y-axis for the rectangle
  		//	sx	= size of the rect along the A-B axis
  		//	sy	= size of the rect along the A-C axis
  
  		//normalize x and y
  		rts::vector<T, N> nx = x.norm();
  		rts::vector<T, N> ny = y.norm();
  
  		//compute X and Y
  		X = sx * x;
  		Y = sy * y;
  
  		//compute A
  		A = p - 0.5 * X - 0.5 * Y;
  
  	}*/
  
  	CUDA_CALLABLE rts::point<T, N> p(T a, T b)
  	{
  		rts::point<T, N> result;
  		//given the two parameters a, b = [0 1], returns the position in world space
  		result = A + X * a + Y * b;
  		
  		return result;
  	}
  
  	CUDA_CALLABLE rts::point<T, N> operator()(T a, T b)
  	{
  		return p(a, b);
  	}
  
  	std::string toStr()
  	{
  		std::stringstream ss;
  
  		ss<<"A = "<<A<<std::endl;
  		ss<<"B = "<<A + X<<std::endl;
  		ss<<"C = "<<A + X + Y<<std::endl;
  		ss<<"D = "<<A + Y<<std::endl;
  
          return ss.str();
  
  	}
  };
  
  }	//end namespace rts
  
  template <typename T, int N>
  std::ostream& operator<<(std::ostream& os, rts::rect<T, N> R)
  {
      os<<R.toStr();
      return os;
  }
  
  
  #endif