Blame view

stim/cuda/templates/chi_gradient.cuh 6.3 KB
f186dbda   Tianshu Cheng   header file for b...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
  #ifndef STIM_CUDA_CHI_GRAD_H
  #define STIM_CUDA_CHI_GRAD_H
  
  #include <iostream>
  #include <cuda.h>
  #include <cuda_runtime.h>
  #include <stim/cuda/sharedmem.cuh>
  #include <cmath>
  #include <algorithm>
  
  #define PI 3.14159265358979
  
  namespace stim{
  	namespace cuda{
  
  		/// template parameter @param T is the data type
  		template<typename T>
  		__global__ void cuda_chi_grad(T* copy, cudaTextureObject_t texObj, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta){
  
  			double theta_r = ((theta) * PI)/180; //change angle unit from degree to rad
  			float sum = 0;
  			unsigned int N = w * h;
  
  			//change 1D index to 2D cordinates
  			int xi = blockIdx.x * blockDim.x + threadIdx.x;
  			int yj = blockIdx.y;
  			int idx = yj * w + xi;
  			int shareidx = threadIdx.x;
  			
  			extern __shared__ unsigned short bin[];
  
  
  			if(xi < w && yj < h){
  
  				int gidx;
  				int hidx;
  
  				//initialize histogram bin to zeros
  				for(int i = 0; i < bin_n; i++){      
  			
  				bin[shareidx * bin_n + i] = 0;
  				__syncthreads();
  
  				}
  				
  				//get the histogram of the first half of disc and store in bin
  				for (int y = yj - r; y <= yj + r; y++){
  					for (int x = xi - r; x <= xi + r; x++){
  						
  							if ((y - yj)*cos(theta_r) + (x - xi)*sin(theta_r) > 0){
  
  								gidx = (int) tex2D<T>(texObj, (float)x/w, (float)y/h)/bin_size;
  								__syncthreads();
  
  								bin[shareidx * bin_n + gidx]++;
  								__syncthreads();
  
  							}
  
  							else{}
  					}		
  				}
  
  				//initiallize the gbin
  				unsigned short* gbin = (unsigned short*) malloc(bin_n*sizeof(unsigned short));
  				memset (gbin, 0, bin_n*sizeof(unsigned short));  
  
  				//copy the histogram to gbin
  				for (unsigned int gi = 0; gi < bin_n; gi++){
  
  					gbin[gi] = bin[shareidx * bin_n + gi];
  				
  				}
  
  				//initialize histogram bin to zeros
  				for(int j = 0; j < bin_n; j++){      //initialize histogram bin to zeros
  			
  				bin[shareidx * bin_n + j] = 0;
  				__syncthreads();
  				}
  
  				//get the histogram of the second half of disc and store in bin
  				for (int y = yj - r; y <= yj + r; y++){
  					for (int x = xi - r; x <= xi + r; x++){
  						
  							if ((y - yj)*cos(theta_r) + (x - xi)*sin(theta_r) < 0){
  
  								hidx = (int) tex2D<T>(texObj, (float)x/w, (float)y/h)/bin_size;
  								__syncthreads();
  
  								bin[shareidx * bin_n + hidx]++;
  								__syncthreads();	
  
  							}
  							else{}
  					}		
  				}
  
  				//initiallize the gbin
  				unsigned short* hbin = (unsigned short*) malloc(bin_n*sizeof(unsigned short));
  				memset (hbin, 0, bin_n*sizeof(unsigned short));      
  
  				//copy the histogram to hbin
  				for (unsigned int hi = 0; hi < bin_n; hi++){
  
  					hbin[hi] = bin[shareidx * bin_n + hi];
  				
  				}
  
  				//compare gbin, hbin and calculate the chi distance
  				for (int k = 0; k < bin_n; k++){
  
  					float flag;              // set flag to avoid zero denominator
  					
  					if ((gbin[k] + hbin[k]) == 0){
  						flag = 1;
  					}
  					else {
  						flag = (gbin[k] + hbin[k]);
  						__syncthreads();
  					}
  
  					sum += (gbin[k] - hbin[k])*(gbin[k] - hbin[k])/flag;
  					__syncthreads();
  
  				}
  
  				// return chi-distance for each pixel
  				copy[idx] = sum;
  
  				free(gbin);
  				free(hbin);
  			 }
  		}
  		
  
  		template<typename T>
  		void gpu_chi_grad(T* img, T* copy, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta){
  
  			unsigned long N = w * h;
  
  			// Allocate CUDA array in device memory
  			
  			//define a channel descriptor for a single 32-bit channel
  			cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
  			cudaArray* cuArray;												//declare the cuda array
  			cudaMallocArray(&cuArray, &channelDesc, w, h);			//allocate the cuda array
  
  			// Copy the image data from global memory to the array
  			cudaMemcpyToArray(cuArray, 0, 0, img, N * sizeof(T), cudaMemcpyDeviceToDevice);
  
  			// Specify texture
  			struct cudaResourceDesc resDesc;				//create a resource descriptor
  			memset(&resDesc, 0, sizeof(resDesc));			//set all values to zero
  			resDesc.resType = cudaResourceTypeArray;		//specify the resource descriptor type
  			resDesc.res.array.array = cuArray;				//add a pointer to the cuda array
  
  			// Specify texture object parameters
  			struct cudaTextureDesc texDesc;							//create a texture descriptor
  			memset(&texDesc, 0, sizeof(texDesc));					//set all values in the texture descriptor to zero
  			texDesc.addressMode[0]   = cudaAddressModeMirror;			//use wrapping (around the edges)
  			texDesc.addressMode[1]   = cudaAddressModeMirror;
  			texDesc.filterMode       = cudaFilterModePoint;			//use linear filtering
  			texDesc.readMode         = cudaReadModeElementType;		//reads data based on the element type (32-bit floats)
  			texDesc.normalizedCoords = 1;							//using normalized coordinates
  
  			// Create texture object
  			cudaTextureObject_t texObj = 0;
  			cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL);
  
  			//get the maximum number of threads per block for the CUDA device
  			int threads = stim::maxThreadsPerBlock();
  			int sharemax = stim::sharedMemPerBlock();                   //get the size of Shared memory available per block in bytes
  			unsigned int shared_bytes = threads * bin_n * sizeof(unsigned short);
  
  			if(threads * bin_n > sharemax){
  
  				cout <<"Error: shared_bytes exceeds the max value."<<'\n';
  				exit(1);
  			
  			}
  			
  
  			//calculate the number of blocks
  			dim3 blocks(w / threads + 1, h);
  
  			//call the kernel to do the multiplication
  			cuda_chi_grad <<< blocks, threads, shared_bytes >>>(copy, texObj, w, h, r, bin_n, bin_size, theta);
  
  		}
  
  		template<typename T>
  		void cpu_chi_grad(T* img, T* cpu_copy, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta){
  			
  			unsigned long N = w * h;
  			//allocate memory on the GPU for the array
  			T* gpu_img; 
  			T* gpu_copy;
  			HANDLE_ERROR( cudaMalloc( &gpu_img, N * sizeof(T) ) );
  			HANDLE_ERROR( cudaMalloc( &gpu_copy, N * sizeof(T) ) );
  
  			//copy the array to the GPU
  			HANDLE_ERROR( cudaMemcpy( gpu_img, img, N * sizeof(T), cudaMemcpyHostToDevice) );
  
  			//call the GPU version of this function
  			gpu_chi_grad<T>(gpu_img, gpu_copy, w, h, r, bin_n, bin_size, theta);
  
  			//copy the array back to the CPU
  			HANDLE_ERROR( cudaMemcpy( cpu_copy, gpu_copy, N * sizeof(T), cudaMemcpyDeviceToHost) );
  
  			//free allocated memory
  			cudaFree(gpu_img);
  			cudaFree(gpu_copy);
  
  		}
  		
  	}
  }
  
  
  #endif