Blame view

stim/optics/scalarmie.h 32.7 KB
9339fbad   David Mayerich   implementing mie ...
1
2
  #ifndef STIM_MIE_H
  #define STIM_MIE_H
8309b07a   David Mayerich   fixed some vec3 e...
3
  #include <boost/math/special_functions/bessel.hpp>
9339fbad   David Mayerich   implementing mie ...
4
5
6
  
  #include "scalarwave.h"
  #include "../math/bessel.h"
31262e83   David Mayerich   GPU implementatio...
7
  #include "../cuda/cudatools/devices.h"
9339fbad   David Mayerich   implementing mie ...
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  #include <cmath>
  
  namespace stim{
  
  
  /// Calculate the scattering coefficients for a spherical scatterer
  template<typename T>
  void B_coefficients(stim::complex<T>* B, T a, T k, stim::complex<T> n, int Nl){
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	double* j_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* y_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dj_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dy_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  
  	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
  	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)
  
  	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
  	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a
  
  	stim::complex<double> h_ka, dh_ka;
  	stim::complex<double> numerator, denominator;
  	stim::complex<double> i(0, 1);
31262e83   David Mayerich   GPU implementatio...
38
  	for(int l = 0; l <= Nl; l++){
9339fbad   David Mayerich   implementing mie ...
39
40
41
42
43
44
45
46
  		h_ka.r = j_ka[l];
  		h_ka.i = y_ka[l];
  		dh_ka.r = dj_ka[l];
  		dh_ka.i = dy_ka[l];
  
  		numerator = j_ka[l] * dj_kna[l] * (stim::complex<double>)n - j_kna[l] * dj_ka[l];
  		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
  		B[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
9339fbad   David Mayerich   implementing mie ...
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  	}
  }
  
  template<typename T>
  void A_coefficients(stim::complex<T>* A, T a, T k, stim::complex<T> n, int Nl){
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	double* j_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* y_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dj_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dy_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
  
  	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
  	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)
  
  	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
  	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a
  
  	stim::complex<double> h_ka, dh_ka;
  	stim::complex<double> numerator, denominator;
  	stim::complex<double> i(0, 1);
  	for(size_t l = 0; l <= Nl; l++){
  		h_ka.r = j_ka[l];
  		h_ka.i = y_ka[l];
  		dh_ka.r = dj_ka[l];
  		dh_ka.i = dy_ka[l];
  
  		numerator = j_ka[l] * dh_ka - dj_ka[l] * h_ka;
  		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
  		A[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
  	}
  }
  
31262e83   David Mayerich   GPU implementatio...
85
  #define LOCAL_NL	16
9339fbad   David Mayerich   implementing mie ...
86
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
87
  __global__ void cuda_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T r_min, T dr, size_t N_hB, int Nl){
31262e83   David Mayerich   GPU implementatio...
88
  	extern __shared__ stim::complex<T> shared_hB[];		//declare the list of waves in shared memory
9339fbad   David Mayerich   implementing mie ...
89
90
  
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
31262e83   David Mayerich   GPU implementatio...
91
  	if(i >= N) return;													//exit if this thread is outside the array
9339fbad   David Mayerich   implementing mie ...
92
93
94
95
96
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  	
31262e83   David Mayerich   GPU implementatio...
97
98
  	T r = p.len();														//calculate the distance from the sphere
  	if(r < a) return;													//exit if the point is inside the sphere (we only calculate the internal field)
8309b07a   David Mayerich   fixed some vec3 e...
99
  	T fij = (r - r_min)/dr;											//FP index into the spherical bessel LUT
31262e83   David Mayerich   GPU implementatio...
100
101
  	size_t ij = (size_t) fij;											//convert to an integral index
  	T alpha = fij - ij;													//calculate the fractional portion of the index
8309b07a   David Mayerich   fixed some vec3 e...
102
103
  	size_t n0j = ij * (Nl + 1);												//start of the first entry in the LUT
  	size_t n1j = (ij+1) * (Nl + 1);											//start of the second entry in the LUT
9339fbad   David Mayerich   implementing mie ...
104
105
  
  	T cos_phi;	
31262e83   David Mayerich   GPU implementatio...
106
107
108
  	T Pl_2, Pl_1, Pl;														//declare registers to store the previous two Legendre polynomials
  	
  	stim::complex<T> hBl;
9339fbad   David Mayerich   implementing mie ...
109
110
  	stim::complex<T> Ei = 0;											//create a register to store the result
  	int l;
31262e83   David Mayerich   GPU implementatio...
111
  
8309b07a   David Mayerich   fixed some vec3 e...
112
113
  	stim::complex<T> hlBl[LOCAL_NL+1];									//the first LOCAL_NL components are stored in registers for speed
  	int shared_start = threadIdx.x * (Nl - LOCAL_NL);					//wrap up some operations so that they aren't done in the main loops
31262e83   David Mayerich   GPU implementatio...
114
  
8309b07a   David Mayerich   fixed some vec3 e...
115
  	#pragma unroll LOCAL_NL+1											//copy the first LOCAL_NL+1 h_l * B_l components to registers
31262e83   David Mayerich   GPU implementatio...
116
117
118
  	for(l = 0; l <= LOCAL_NL; l++)
  		hlBl[l] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
  	
8309b07a   David Mayerich   fixed some vec3 e...
119
  	for(l = LOCAL_NL+1; l <= Nl; l++)									//copy any additional h_l * B_l components to shared memory
31262e83   David Mayerich   GPU implementatio...
120
121
  		shared_hB[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
  
8309b07a   David Mayerich   fixed some vec3 e...
122
  	for(size_t w = 0; w < nW; w++){										//for each plane wave
9339fbad   David Mayerich   implementing mie ...
123
  		cos_phi = p.norm().dot(W[w].kvec().norm());						//calculate the cosine of the angle between the k vector and the direction from the sphere
8309b07a   David Mayerich   fixed some vec3 e...
124
  		Pl_2 = 1;														//the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
31262e83   David Mayerich   GPU implementatio...
125
  		Pl_1 = cos_phi;
8309b07a   David Mayerich   fixed some vec3 e...
126
  		Ei += W[w].E() * hlBl[0] * Pl_2;								//unroll the first two orders using the initial steps of the Legendre recursive relation
31262e83   David Mayerich   GPU implementatio...
127
128
  		Ei += W[w].E() * hlBl[1] * Pl_1;		
  
8309b07a   David Mayerich   fixed some vec3 e...
129
  		#pragma unroll LOCAL_NL-1										//unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
31262e83   David Mayerich   GPU implementatio...
130
  		for(l = 2; l <= LOCAL_NL; l++){
8309b07a   David Mayerich   fixed some vec3 e...
131
132
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);	//calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
  			Ei += W[w].E() * hlBl[l] * Pl;								//calculate and sum the current field order
31262e83   David Mayerich   GPU implementatio...
133
  			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
9339fbad   David Mayerich   implementing mie ...
134
  			Pl_1 = Pl;
31262e83   David Mayerich   GPU implementatio...
135
  		}
9339fbad   David Mayerich   implementing mie ...
136
  
8309b07a   David Mayerich   fixed some vec3 e...
137
138
139
140
141
  		for(l = LOCAL_NL+1; l <= Nl; l++){											//do the same as above, except for any additional orders that are stored in shared memory (not registers)
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);				//again, this is where most computation in the kernel occurs
  			Ei += W[w].E() * shared_hB[shared_start + l - LOCAL_NL - 1] * Pl;
  			Pl_2 = Pl_1;															//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;			
9339fbad   David Mayerich   implementing mie ...
142
  		}
9339fbad   David Mayerich   implementing mie ...
143
  	}
31262e83   David Mayerich   GPU implementatio...
144
  	E[i] += Ei;															//copy the result to device memory
9339fbad   David Mayerich   implementing mie ...
145
146
147
  }
  
  template<typename T>
31262e83   David Mayerich   GPU implementatio...
148
149
150
  void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T kr_min, T dkr, size_t N_hB, size_t Nl){
  	
  	size_t max_shared_mem = stim::sharedMemPerBlock();	
8309b07a   David Mayerich   fixed some vec3 e...
151
  	size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
4252d827   David Mayerich   ivote3 fixes and ...
152
153
  	//std::cout<<"hl*Bl array size:  "<<hBl_array<<std::endl;
  	//std::cout<<"shared memory:     "<<max_shared_mem<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
154
  	int threads = (int)((max_shared_mem / hBl_array) / 32 * 32);
4252d827   David Mayerich   ivote3 fixes and ...
155
  	//std::cout<<"threads per block: "<<threads<<std::endl;
31262e83   David Mayerich   GPU implementatio...
156
157
158
159
160
  	dim3 blocks((unsigned)(N / threads + 1));										//calculate the optimal number of blocks
  
  	size_t shared_mem;
  	if(Nl <= LOCAL_NL) shared_mem = 0;
  	else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL);				//amount of shared memory to allocate
4252d827   David Mayerich   ivote3 fixes and ...
161
  	//std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
31262e83   David Mayerich   GPU implementatio...
162
  	cuda_scalar_mie_scatter<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, hB, kr_min, dkr, N_hB, (int)Nl);	//call the kernel
31262e83   David Mayerich   GPU implementatio...
163
164
165
166
167
168
169
170
171
172
173
174
175
  }
  
  template<typename T>
  __global__ void cuda_dist(T* r, T* x, T* y, T* z, size_t N){
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
  	if(i >= N) return;													//exit if this thread is outside the array
  
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  
  	r[i] = p.len();
9339fbad   David Mayerich   implementing mie ...
176
  }
9339fbad   David Mayerich   implementing mie ...
177
  template<typename T>
4252d827   David Mayerich   ivote3 fixes and ...
178
179
  void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, T r_spacing = 0.1){
  	
9339fbad   David Mayerich   implementing mie ...
180
181
182
  	//calculate the necessary number of orders required to represent the scattered field
  	T k = W[0].kmag();
  
31262e83   David Mayerich   GPU implementatio...
183
184
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
4252d827   David Mayerich   ivote3 fixes and ...
185
  	//std::cout<<"Nl: "<<Nl<<std::endl;
9339fbad   David Mayerich   implementing mie ...
186
187
188
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
4252d827   David Mayerich   ivote3 fixes and ...
189
190
  	B_coefficients(B, a, k, n, Nl);	
  	
9339fbad   David Mayerich   implementing mie ...
191
192
193
194
195
  	//	PLANE WAVES
  	stim::scalarwave<T>* dev_W;																//allocate space and copy plane waves
  	HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
  	HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
  
9339fbad   David Mayerich   implementing mie ...
196
  	// BESSEL FUNCTION LOOK-UP TABLE
31262e83   David Mayerich   GPU implementatio...
197
198
199
200
201
202
  	//calculate the distance from the sphere center
  	T* dev_r;
  	HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
  		
  	int threads = stim::maxThreadsPerBlock();
  	dim3 blocks((unsigned)(N / threads + 1));
4252d827   David Mayerich   ivote3 fixes and ...
203
  	cuda_dist<T> <<< blocks, threads >>>(dev_r, x, y, z, N);
31262e83   David Mayerich   GPU implementatio...
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  
  	//Find the minimum and maximum values of r
      cublasStatus_t stat;
      cublasHandle_t handle;
  
  	stat = cublasCreate(&handle);							//create a cuBLAS handle
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS initialization failed\n");
  		exit(1);
  	}
  
  	int i_min, i_max;
  	stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate minimum r value.\n");
  		exit(1);
  	}
  	stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate maximum r value.\n");
  		exit(1);
  	}
  
8309b07a   David Mayerich   fixed some vec3 e...
227
228
  	i_min--;				//cuBLAS uses 1-based indexing for Fortran compatibility
  	i_max--;
31262e83   David Mayerich   GPU implementatio...
229
230
231
232
  	T r_min, r_max;											//allocate space to store the minimum and maximum values
  	HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
  	HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
  
8309b07a   David Mayerich   fixed some vec3 e...
233
  	r_min = max(r_min, a);									//if the radius of the sphere is larger than r_min, change r_min to a (the scattered field doesn't exist inside the sphere)
31262e83   David Mayerich   GPU implementatio...
234
  
9339fbad   David Mayerich   implementing mie ...
235
  	//size_t Nlut_j = (size_t)((r_max - r_min) / r_spacing + 1);			//number of values in the look-up table based on the user-specified spacing along r
31262e83   David Mayerich   GPU implementatio...
236
  	size_t N_hB_lut = (size_t)((r_max - r_min) / r_spacing + 1);
9339fbad   David Mayerich   implementing mie ...
237
  
8309b07a   David Mayerich   fixed some vec3 e...
238
239
  	//T kr_min = k * r_min;
  	//T kr_max = k * r_max;
9339fbad   David Mayerich   implementing mie ...
240
241
242
243
244
245
246
247
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	double* jv = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* yv = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* djv= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) );
  
31262e83   David Mayerich   GPU implementatio...
248
249
  	size_t hB_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_hB_lut;
  	stim::complex<T>* hB_lut = (stim::complex<T>*) malloc(hB_bytes);													//pointer to the look-up table
8309b07a   David Mayerich   fixed some vec3 e...
250
  	T dr = (r_max - r_min) / (N_hB_lut-1);												//distance between values in the LUT
4252d827   David Mayerich   ivote3 fixes and ...
251
  	//std::cout<<"LUT jl bytes:  "<<hB_bytes<<std::endl;
31262e83   David Mayerich   GPU implementatio...
252
  	stim::complex<T> hl;
8309b07a   David Mayerich   fixed some vec3 e...
253
254
  	for(size_t ri = 0; ri < N_hB_lut; ri++){													//for each value in the LUT
  		stim::bessjyv_sph<double>(Nl, k * (r_min + ri * dr), vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
9339fbad   David Mayerich   implementing mie ...
255
  		for(size_t l = 0; l <= Nl; l++){													//for each order
31262e83   David Mayerich   GPU implementatio...
256
257
258
  			hl.r = (T)jv[l];
  			hl.i = (T)yv[l];
  
8309b07a   David Mayerich   fixed some vec3 e...
259
260
  			hB_lut[ri * (Nl + 1) + l] = hl * B[l];										//store the bessel function result
  			//std::cout<<hB_lut[ri * (Nl + 1) + l]<<std::endl;
9339fbad   David Mayerich   implementing mie ...
261
262
  		}
  	}
4252d827   David Mayerich   ivote3 fixes and ...
263
264
265
  	//T* real_lut = (T*) malloc(hB_bytes/2);
  	//stim::real(real_lut, hB_lut, N_hB_lut);
  	//stim::cpu2image<T>(real_lut, "hankel_B.bmp", Nl+1, N_hB_lut, stim::cmBrewer);
9339fbad   David Mayerich   implementing mie ...
266
267
  
  	//Allocate device memory and copy everything to the GPU
31262e83   David Mayerich   GPU implementatio...
268
269
270
  	stim::complex<T>* dev_hB_lut;
  	HANDLE_ERROR( cudaMalloc(&dev_hB_lut, hB_bytes) );
  	HANDLE_ERROR( cudaMemcpy(dev_hB_lut, hB_lut, hB_bytes, cudaMemcpyHostToDevice) );
9339fbad   David Mayerich   implementing mie ...
271
  
4252d827   David Mayerich   ivote3 fixes and ...
272
  	gpu_scalar_mie_scatter<T>(E, N, x, y, z, dev_W, W.size(), a, n, dev_hB_lut, r_min, dr, N_hB_lut, Nl);
9339fbad   David Mayerich   implementing mie ...
273
  
4252d827   David Mayerich   ivote3 fixes and ...
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
  	cudaMemcpy(E, E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost);			//copy the field from device memory
  }
  /// Calculate the scalar Mie solution for the scattered field produced by a single plane wave
  
  /// @param E is a pointer to the destination field values
  /// @param N is the number of points used to calculate the field
  /// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
  /// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
  /// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
  /// @param W is an array of planewaves that will be scattered
  /// @param a is the radius of the sphere
  /// @param n is the complex refractive index of the sphere
  template<typename T>
  void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, T r_spacing = 0.1){
  	
  
  #ifdef CUDA_FOUND
  	stim::complex<T>* dev_E;										//allocate space for the field
  	cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
  	cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
  	//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>));				//set the field to zero (necessary because a sum is used)
  
  	//	COORDINATES
  	T* dev_x = NULL;												//allocate space and copy the X coordinate (if specified)
  	if(x != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_y = NULL;												//allocate space and copy the Y coordinate (if specified)
  	if(y != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_z = NULL;												//allocate space and copy the Z coordinate (if specified)
  	if(z != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  
  	gpu_scalar_mie_scatter(dev_E, N, dev_x, dev_y, dev_z, W, a, n, r_spacing);
9339fbad   David Mayerich   implementing mie ...
314
315
316
317
318
319
320
  
  	if(x != NULL) cudaFree(dev_x);														//free everything
  	if(y != NULL) cudaFree(dev_y);
  	if(z != NULL) cudaFree(dev_z);
  	cudaFree(dev_E);
  #else
  	
4252d827   David Mayerich   ivote3 fixes and ...
321
322
323
324
325
326
327
328
329
330
  	//calculate the necessary number of orders required to represent the scattered field
  	T k = W[0].kmag();
  
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
  	//std::cout<<"Nl: "<<Nl<<std::endl;
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
  	B_coefficients(B, a, k, n, Nl);
9339fbad   David Mayerich   implementing mie ...
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
  
  	//allocate space to store the bessel function call results
  	double vm;										
  	double* j_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* y_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dj_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
  	double* dy_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
  
  	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
  
  	T r, kr, cos_phi;
  	stim::complex<T> h;
  	for(size_t i = 0; i < N; i++){
  		stim::vec3<T> p;															//declare a 3D point
  	
  		(x == NULL) ? p[0] = 0 : p[0] = x[i];										// test for NULL values and set positions
  		(y == NULL) ? p[1] = 0 : p[1] = y[i];
  		(z == NULL) ? p[2] = 0 : p[2] = z[i];
  		r = p.len();
  		if(r >= a){
  			for(size_t w = 0; w < W.size(); w++){
  				kr = p.len() * W[w].kmag();											//calculate k*r
  				stim::bessjyv_sph<double>(Nl, kr, vm, j_kr, y_kr, dj_kr, dy_kr);
  				cos_phi = p.norm().dot(W[w].kvec().norm());							//calculate the cosine of the angle from the propagating direction
  				stim::legendre<T>(Nl, cos_phi, P);
  
  				for(size_t l = 0; l <= Nl; l++){
  					h.r = j_kr[l];
  					h.i = y_kr[l];
  					E[i] += W[w].E() * B[l] * h * P[l];
  				}
  			}
  		}
  	}
  #endif
  }
  
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
369
  void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, T r_spacing = 0.1){
9339fbad   David Mayerich   implementing mie ...
370
  	std::vector< stim::scalarwave<T> > W(1, w);
8309b07a   David Mayerich   fixed some vec3 e...
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
  	cpu_scalar_mie_scatter(E, N, x, y, z, W, a, n, r_spacing);
  }
  
  template<typename T>
  __global__ void cuda_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, int Nl){
  	extern __shared__ stim::complex<T> shared_jA[];		//declare the list of waves in shared memory
  
  	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
  	if(i >= N) return;													//exit if this thread is outside the array
  	stim::vec3<T> p;
  	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
  	(y == NULL) ? p[1] = 0 : p[1] = y[i];
  	(z == NULL) ? p[2] = 0 : p[2] = z[i];
  	
  	T r = p.len();														//calculate the distance from the sphere
963d0676   David Mayerich   bug fixes related...
386
  	if(r >= a) return;													//exit if the point is inside the sphere (we only calculate the internal field)
8309b07a   David Mayerich   fixed some vec3 e...
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
  	T fij = (r - r_min)/dr;											//FP index into the spherical bessel LUT
  	size_t ij = (size_t) fij;											//convert to an integral index
  	T alpha = fij - ij;													//calculate the fractional portion of the index
  	size_t n0j = ij * (Nl + 1);												//start of the first entry in the LUT
  	size_t n1j = (ij+1) * (Nl + 1);											//start of the second entry in the LUT
  
  	T cos_phi;	
  	T Pl_2, Pl_1, Pl;														//declare registers to store the previous two Legendre polynomials
  	
  	stim::complex<T> jAl;
  	stim::complex<T> Ei = 0;											//create a register to store the result
  	int l;
  
  	stim::complex<T> jlAl[LOCAL_NL+1];									//the first LOCAL_NL components are stored in registers for speed
  	int shared_start = threadIdx.x * (Nl - LOCAL_NL);					//wrap up some operations so that they aren't done in the main loops
  
  	#pragma unroll LOCAL_NL+1											//copy the first LOCAL_NL+1 h_l * B_l components to registers
  	for(l = 0; l <= LOCAL_NL; l++)
  		jlAl[l] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
  	
  	for(l = LOCAL_NL+1; l <= Nl; l++)									//copy any additional h_l * B_l components to shared memory
  		shared_jA[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
  
  	for(size_t w = 0; w < nW; w++){										//for each plane wave
  		if(r == 0) cos_phi = 0;
  		else
  			cos_phi = p.norm().dot(W[w].kvec().norm());						//calculate the cosine of the angle between the k vector and the direction from the sphere
  		Pl_2 = 1;														//the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
  		Pl_1 = cos_phi;
  		Ei += W[w].E() * jlAl[0] * Pl_2;								//unroll the first two orders using the initial steps of the Legendre recursive relation
  		Ei += W[w].E() * jlAl[1] * Pl_1;		
  
  		#pragma unroll LOCAL_NL-1										//unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
  		for(l = 2; l <= LOCAL_NL; l++){
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);	//calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
  			Ei += W[w].E() * jlAl[l] * Pl;								//calculate and sum the current field order
  			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;
  		}
  
  		for(l = LOCAL_NL+1; l <= Nl; l++){											//do the same as above, except for any additional orders that are stored in shared memory (not registers)
  			Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l);				//again, this is where most computation in the kernel occurs
  			Ei += W[w].E() * shared_jA[shared_start + l - LOCAL_NL - 1] * Pl;
  			Pl_2 = Pl_1;															//shift Pl_1 -> Pl_2 and Pl -> Pl_1
  			Pl_1 = Pl;			
  		}
  	}
  	E[i] = Ei;															//copy the result to device memory
  }
  
  template<typename T>
  void gpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, size_t Nl){
  	
  	size_t max_shared_mem = stim::sharedMemPerBlock();	
  	size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
4252d827   David Mayerich   ivote3 fixes and ...
442
443
  	//std::cout<<"hl*Bl array size:  "<<hBl_array<<std::endl;
  	//std::cout<<"shared memory:     "<<max_shared_mem<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
444
  	int threads = (int)((max_shared_mem / hBl_array) / 32 * 32);
4252d827   David Mayerich   ivote3 fixes and ...
445
  	//std::cout<<"threads per block: "<<threads<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
446
447
448
449
450
  	dim3 blocks((unsigned)(N / threads + 1));										//calculate the optimal number of blocks
  
  	size_t shared_mem;
  	if(Nl <= LOCAL_NL) shared_mem = 0;
  	else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL);				//amount of shared memory to allocate
4252d827   David Mayerich   ivote3 fixes and ...
451
  	//std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
452
  	cuda_scalar_mie_internal<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, jA, r_min, dr, N_jA, (int)Nl);	//call the kernel
9339fbad   David Mayerich   implementing mie ...
453
454
455
456
457
458
459
460
461
462
463
464
465
  }
  
  /// Calculate the scalar Mie solution for the internal field produced by a single plane wave scattered by a sphere
  
  /// @param E is a pointer to the destination field values
  /// @param N is the number of points used to calculate the field
  /// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
  /// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
  /// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
  /// @param w is a planewave that will be scattered
  /// @param a is the radius of the sphere
  /// @param n is the complex refractive index of the sphere
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
466
467
  void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector< stim::scalarwave<T> > W, T a, stim::complex<T> n, T r_spacing = 0.1){
  //calculate the necessary number of orders required to represent the scattered field
9339fbad   David Mayerich   implementing mie ...
468
469
  	T k = W[0].kmag();
  
8309b07a   David Mayerich   fixed some vec3 e...
470
471
  	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
  	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
4252d827   David Mayerich   ivote3 fixes and ...
472
  	//std::cout<<"Nl: "<<Nl<<std::endl;
9339fbad   David Mayerich   implementing mie ...
473
474
475
476
477
  
  	//calculate the scattering coefficients for the sphere
  	stim::complex<T>* A = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
  	A_coefficients(A, a, k, n, Nl);
  
8309b07a   David Mayerich   fixed some vec3 e...
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
  #ifdef CUDA_FOUND
  	stim::complex<T>* dev_E;										//allocate space for the field
  	cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
  	cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
  	//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>));				//set the field to zero (necessary because a sum is used)
  
  	//	COORDINATES
  	T* dev_x = NULL;												//allocate space and copy the X coordinate (if specified)
  	if(x != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_y = NULL;												//allocate space and copy the Y coordinate (if specified)
  	if(y != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  	T* dev_z = NULL;												//allocate space and copy the Z coordinate (if specified)
  	if(z != NULL){
  		HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
  		HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
  	}
  
  	//	PLANE WAVES
  	stim::scalarwave<T>* dev_W;																//allocate space and copy plane waves
  	HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
  	HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
  
  	// BESSEL FUNCTION LOOK-UP TABLE
  	//calculate the distance from the sphere center
  	T* dev_r;
  	HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
  		
  	int threads = stim::maxThreadsPerBlock();
  	dim3 blocks((unsigned)(N / threads + 1));
  	cuda_dist<T> <<< blocks, threads >>>(dev_r, dev_x, dev_y, dev_z, N);
  
  	//Find the minimum and maximum values of r
      cublasStatus_t stat;
      cublasHandle_t handle;
  
  	stat = cublasCreate(&handle);							//create a cuBLAS handle
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS initialization failed\n");
  		exit(1);
  	}
  
  	int i_min, i_max;
  	stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate minimum r value.\n");
  		exit(1);
  	}
  	stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
  	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
          printf ("CUBLAS Error: failed to calculate maximum r value.\n");
  		exit(1);
  	}
  
  	i_min--;				//cuBLAS uses 1-based indexing for Fortran compatibility
  	i_max--;
  	T r_min, r_max;											//allocate space to store the minimum and maximum values
  	HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
  	HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
  
  	r_max = min(r_max, a);		//the internal field doesn't exist outside of the sphere
  
  	size_t N_jA_lut = (size_t)((r_max - r_min) / r_spacing + 1);
  
  	//temporary variables
  	double vm;															//allocate space to store the return values for the bessel function calculation
  	stim::complex<double>* jv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* yv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* djv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dyv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	size_t jA_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_jA_lut;
  	stim::complex<T>* jA_lut = (stim::complex<T>*) malloc(jA_bytes);													//pointer to the look-up table
  	T dr = (r_max - r_min) / (N_jA_lut-1);												//distance between values in the LUT
4252d827   David Mayerich   ivote3 fixes and ...
557
  	//std::cout<<"LUT jl bytes:  "<<jA_bytes<<std::endl;
8309b07a   David Mayerich   fixed some vec3 e...
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
  	stim::complex<T> hl;
  	stim::complex<double> nd = (stim::complex<double>)n;
  	for(size_t ri = 0; ri < N_jA_lut; ri++){													//for each value in the LUT
  		stim::cbessjyva_sph<double>(Nl, nd * k * (r_min + ri * dr), vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
  		for(size_t l = 0; l <= Nl; l++){													//for each order
  			jA_lut[ri * (Nl + 1) + l] = (stim::complex<T>)(jv[l] * (stim::complex<double>)A[l]);										//store the bessel function result
  		}
  	}
  
  	//Allocate device memory and copy everything to the GPU
  	stim::complex<T>* dev_jA_lut;
  	HANDLE_ERROR( cudaMalloc(&dev_jA_lut, jA_bytes) );
  	HANDLE_ERROR( cudaMemcpy(dev_jA_lut, jA_lut, jA_bytes, cudaMemcpyHostToDevice) );
  
  	gpu_scalar_mie_internal<T>(dev_E, N, dev_x, dev_y, dev_z, dev_W, W.size(), a, n, dev_jA_lut, r_min, dr, N_jA_lut, Nl);
  
  	cudaMemcpy(E, dev_E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost);			//copy the field from device memory
  
  	if(x != NULL) cudaFree(dev_x);														//free everything
  	if(y != NULL) cudaFree(dev_y);
  	if(z != NULL) cudaFree(dev_z);
4252d827   David Mayerich   ivote3 fixes and ...
579
580
581
582
  	HANDLE_ERROR( cudaFree(dev_jA_lut) );
  	HANDLE_ERROR( cudaFree(dev_E) );
  	HANDLE_ERROR( cudaFree(dev_W) );
  	HANDLE_ERROR( cudaFree(dev_r) );
8309b07a   David Mayerich   fixed some vec3 e...
583
584
585
  	cudaFree(dev_E);
  #else
  
9339fbad   David Mayerich   implementing mie ...
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
  	//allocate space to store the bessel function call results
  	double vm;										
  	stim::complex<double>* j_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* y_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dj_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  	stim::complex<double>* dy_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
  
  	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
  
  	T r, cos_phi;
  	stim::complex<double> knr;
  	stim::complex<T> h;
  	for(size_t i = 0; i < N; i++){
  		stim::vec3<T> p;									//declare a 3D point
  	
  		(x == NULL) ? p[0] = 0 : p[0] = x[i];				// test for NULL values and set positions
  		(y == NULL) ? p[1] = 0 : p[1] = y[i];
  		(z == NULL) ? p[2] = 0 : p[2] = z[i];
  		r = p.len();
  		if(r < a){
  			E[i] = 0;
  			for(size_t w = 0; w < W.size(); w++){
  				knr = (stim::complex<double>)n * p.len() * W[w].kmag();							//calculate k*n*r
  
  				stim::cbessjyva_sph<double>(Nl, knr, vm, j_knr, y_knr, dj_knr, dy_knr);
  				if(r == 0)
  					cos_phi = 0;
  				else
  					cos_phi = p.norm().dot(W[w].kvec().norm());				//calculate the cosine of the angle from the propagating direction
  				stim::legendre<T>(Nl, cos_phi, P);
  								
  				for(size_t l = 0; l <= Nl; l++){
  					E[i] += W[w].E() * A[l] * (stim::complex<T>)j_knr[l] * P[l];
  				}
  			}
  		}
  	}
8309b07a   David Mayerich   fixed some vec3 e...
623
  #endif
9339fbad   David Mayerich   implementing mie ...
624
625
626
  }
  
  template<typename T>
8309b07a   David Mayerich   fixed some vec3 e...
627
  void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, T r_spacing = 0.1){
9339fbad   David Mayerich   implementing mie ...
628
  	std::vector< stim::scalarwave<T> > W(1, w);
8309b07a   David Mayerich   fixed some vec3 e...
629
  	cpu_scalar_mie_internal(E, N, x, y, z, W, a, n, r_spacing);
9339fbad   David Mayerich   implementing mie ...
630
631
  }
  
963d0676   David Mayerich   bug fixes related...
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
  
  /// Class stim::scalarmie represents a scalar Mie scattering model that can be used to calculate the fields produced by a scattering sphere.
  template<typename T>
  class scalarmie
  {
  private:
  	T radius;					//radius of the scattering sphere
  	stim::complex<T> n;			//refractive index of the scattering sphere
  	
  public:
  
  	scalarmie(T r, stim::complex<T> ri){
  		radius = r;
  		n = ri;
  	}
  
4252d827   David Mayerich   ivote3 fixes and ...
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
  	void sum_scat(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int samples = 1000){
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves
  		stim::cpu_scalar_mie_scatter<float>(E.ptr(), E.size(), X, Y, Z, wave_array, radius, n, E.spacing());
  	}
  
  	void sum_intern(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int samples = 1000){
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves
  		stim::cpu_scalar_mie_internal<float>(E.ptr(), E.size(), X, Y, Z, wave_array, radius, n, E.spacing());
  	}
  
  	void eval(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int order = 500, int samples = 1000){
  		b.eval(E, X, Y, Z, order);													//evaluate the incident field using a plane wave expansion
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves		
  		sum_scat(E, X, Y, Z, b, samples);
  		sum_intern(E, X, Y, Z, b, samples);
  	}
  
963d0676   David Mayerich   bug fixes related...
665
666
  	void eval(stim::scalarfield<T>& E, stim::scalarbeam<T> b, int order = 500, int samples = 1000){
  
4252d827   David Mayerich   ivote3 fixes and ...
667
  		/*size_t array_size = E.grid_bytes();											//calculate the number of bytes in the scalar grid
963d0676   David Mayerich   bug fixes related...
668
669
670
671
  		float* X = (float*) malloc( array_size );									//allocate space for the coordinate meshes
  		float* Y = (float*) malloc( array_size );
  		float* Z = (float*) malloc( array_size );
  		E.meshgrid(X, Y, Z, stim::CPUmem);											//calculate the coordinate meshes
4252d827   David Mayerich   ivote3 fixes and ...
672
673
674
  		*/
  		E.meshgrid();
  		b.eval(E, order);
963d0676   David Mayerich   bug fixes related...
675
676
  
  		std::vector< stim::scalarwave<float> > wave_array = b.mc(samples);			//decompose the beam into an array of plane waves
4252d827   David Mayerich   ivote3 fixes and ...
677
678
679
680
681
682
683
684
685
  
  		if(E.gpu()){
  			stim::gpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
  		}
  		else{
  			stim::cpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
  			stim::cpu_scalar_mie_internal<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
  		}
  		//eval(E, X, Y, Z, b, order, samples);										//evaluate the field		
963d0676   David Mayerich   bug fixes related...
686
687
688
689
690
  	}
  
  };			//end stim::scalarmie
  
  }			//end namespace stim
9339fbad   David Mayerich   implementing mie ...
691
692
  
  #endif