tPb.cpp
3.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include <stim/image/image.h>
#include <cmath>
#include <stim/visualization/colormap.h>
#include <stim/image/image_contour_detection.h>
#include <sstream>
void array_multiply(float* lhs, float rhs, unsigned int N);
void array_add(float* ptr1, float* ptr2, float* sum, unsigned int N);
void chi_grad(float* img, float* cpu_copy, unsigned int w, unsigned int h, int r, unsigned int bin_n, unsigned int bin_size, float theta);
/// This function evaluates the tPb given a grayscale image
/// @param img is the multi-channel image
/// @param theta_n is the number of angles used for computing oriented chi-gradient
/// @param r is an array of radii for different scaled discs(filters)
/// @param alpha is is an array of weights for different scaled discs(filters)
/// @param s is the number of scales
/// @param K is the number of clusters
stim::image<float> tPb(stim::image<float> img, int* r, float* alpha, unsigned int theta_n, unsigned int bin_n, int s, unsigned K){
unsigned int w = img.width(); // get the width of picture
unsigned int h = img.height(); // get the height of picture
unsigned int N = w * h; // get the number of pixels
stim::image<float> img_textons(w, h, 1, theta_n*2+1); // allocate space for img_textons
stim::image<float> img_texture(w, h, 1, 1); // allocate space for img_texture
stim::image<float> tPb_theta(w, h, 1, 1); // allocate space for tPb_theta
stim::image<float> tPb(w, h, 1, 1); // allocate space for tPb
unsigned size = tPb_theta.size(); // get the size of tPb_theta
memset (tPb.data(), 0, size * sizeof(float)); // initialize all the pixels of tPb to 0
stim::image<float> temp(w, h, 1, 1); // set the temporary image to store the addtion result
std::ostringstream ss; // (optional) set the stream to designate the test result file
img_textons = textons(img, theta_n);
img_texture = kmeans(img_textons, K); // changing kmeans result into float type is required
stim::cpu2image(img_texture.data(), "data_output/texture_0925.bmp", w, h, stim::cmBrewer);
unsigned int max1 = img_texture.maxv(); // get the maximum of Pb used for normalization
unsigned int bin_size = (max1 + 1)/bin_n; // (whether"+1" or not depends on kmeans result)
for (int i = 0; i < theta_n; i++){
float theta = 180 * ((float)i/theta_n); // calculate the even-splited angle for each tPb_theta
memset (tPb_theta.data(), 0, size * sizeof(float)); // initialize all the pixels of tPb_theta to 0
//ss << "data_output/0922tPb_theta"<< theta << ".bmp"; // set the name for test result file (optional)
//std::string sss = ss.str();
for (int j = 0; j < s; j++){
// get the chi-gradient by convolving each image slice with the mask
chi_grad(img_texture.data(), temp.data(), w, h, r[j], bin_n, bin_size, theta);
float max2 = temp.maxv(); // get the maximum of tPb_theta used for normalization
array_multiply(temp.data(), 1/max2, N); // normalize the tPb_theta
//output the test result of each slice (optional)
//stim::cpu2image(temp.data(), "data_output/tPb_slice0924_2.bmp", w, h, stim::cmBrewer);
// multiply each chi-gradient with its weight
array_multiply(temp.data(), alpha[j], N);
// add up all the weighted chi-gradients
array_add(tPb_theta.data(), temp.data(), tPb_theta.data(), N);
}
//ss.str(""); //(optional) clear the space for stream
for(unsigned long ti = 0; ti < N; ti++){
if(tPb_theta.data()[ti] > tPb.data()[ti]){ //get the maximum value among all tPb_theta for ith pixel
tPb.data()[ti] = tPb_theta.data()[ti];
}
else{
}
}
}
float max3 = tPb.maxv(); // get the maximum of tPb used for normalization
array_multiply(tPb.data(), 1/max3, N); // normalize the tPb
//output the test result of tPb (optional)
//stim::cpu2image(tPb.data(), "data_output/tPb_0922.bmp", w, h, stim::cmBrewer);
return tPb;
}