binary.h 26.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

//make sure that this header file is only loaded once
#ifndef RTS_BINARY_H
#define RTS_BINARY_H

#include "../envi/envi_header.h"
#include "../math/vector.h"
#include <fstream>
#include <sys/stat.h>
#include <cstring>
#include <chrono>
#ifdef _WIN32
#include <Windows.h>
#else
#include <unistd.h>
#endif

#ifdef CUDA_FOUND
//CUDA externs
void gpu_permute(char* dest, char* src, size_t sx, size_t sy, size_t sz, size_t d0, size_t d1, size_t d2, size_t typesize);
#include <stim/cuda/cudatools/error.h>
#endif

namespace stim{

/// This class calculates the optimal setting for independent parameter b (batch size) for
///		minimizing the dependent parameter bps (bytes per second)
class stream_optimizer{
protected:
	size_t Bps[2];							//bytes per second for the previous batch
	size_t interval_B;					//number of bytes processed this interval
	size_t interval_ms;					//number of milliseconds spent in the current interval
	size_t n[2];							//current batch size (in bytes)
	size_t h;							//spacing used for finite difference calculations
	size_t dn;							//delta value (in bytes) for setting the batch size (minimum change in batch parameter)
	size_t maxn;						//maximum value for the batch size

	double alpha;						//alpha value controls the factor of the gradient that is used to calculate the next point (speed of convergence)

	bool sample_step;					//calculating the derivative (this class alternates between calculating dBps and B)
	bool forward_diff;					//evaluate the derivative using forward differences

	size_t window_ms;					//size of the interval (in milliseconds) integrated to get a reliable bps value

	// This function rounds x to the nearest value within dB
	size_t round_limit(double n0){
		if(n0 < 0) return dn;					//if n0 is less than zero, return the lowest possible n

		size_t new_n = (size_t)(n0 + 0.5);		//now n0 must be positive, so round it to the nearest integer
		if(new_n > maxn) new_n = maxn;			//limit the returned size of x to within the specified bounds

		size_t lowest = new_n / dn;
		size_t highest = lowest + dn;
		size_t diff[2] = {new_n - lowest, highest - new_n};	//calculate the two differences
		if(diff[0] < diff[1])
			return lowest;
		return highest;
	}

public:

	//constructor initializes a stream optimizer
	stream_optimizer(size_t min_batch_size, size_t max_batch_size, double a = 0.003, size_t probe_step = 5, size_t window = 2000){
		//Bps = 0;						//initialize to zero bytes per second processed
		Bps[0] = Bps[1] = 0;			//initialize the bits per second to 0
		interval_B = 0;					//zero bytes have been processed at initialization
		interval_ms = 0;				//no time has been spent on the batch so far
		dn = min_batch_size;			//set the minimum batch size as the minimum change in batch size
		maxn = max_batch_size;			//set the maximum batch size
		n[0] = max_batch_size;			//set B
		h = (max_batch_size / min_batch_size) / probe_step * dn;
		std::cout<<"h = "<<h<<std::endl;
		if(h < dn) h = dn;
		alpha = a;
		//n[0] = round_limit( (max_batch_size - min_batch_size)/2 );
		window_ms = window;		//minimum integration interval (for getting a reliable bps measure)
		sample_step = true;					//the first step is to calculate the derivative
		forward_diff = true;			//start with the forward difference (since we start at the maximum batch size)
	}

	size_t update(size_t bytes_processed, size_t ms_spent, size_t& data_rate, bool VERBOSE = false){
		interval_B += bytes_processed;		//increment the number of bytes processed
		interval_ms += ms_spent;			//increment the number of milliseconds spent processing
		data_rate = interval_B / interval_ms;

		//if we have sufficient information to evaluate the optimization function at this point
		if(interval_ms < window_ms){					//if insufficient time has passed to get a reliable Bps measurement
			return n[0];
		}
		else{											//if we have collected enough information for a reliable Bps estimate
			
			if(Bps[0] == 0){							//if n[0] hasn't been evaluated yet, this is the first step
				Bps[0] = data_rate;						//set the initial Bps value
				n[1] = n[0] - h;						//set the position of the next sample point
				if(VERBOSE)
					std::cout<<"Bps value at n = "<<n[0]<<" is "<<Bps[0]<<" Bps, probing n = "<<n[1]<<std::endl;
				return n[1];							//return the probe point
			}
			else{
				Bps[1] = data_rate;						//set the Bps for the current point (n[1])

				double Bps_p;							//allocate a variable for the derivative
				//calculate the derivative
				if(n[0] < n[1]){						//if the current point is less than the previous one (probably the most common)
					Bps_p = ((double)Bps[1] - (double)Bps[0]) / (double)h;		//calculate the derivative using the forward finite difference
				}
				else{
					Bps_p = ((double)Bps[0] - (double)Bps[1]) / (double)h;		//calculate the derivative using the backward finite difference
				}
				if(VERBOSE)
					std::cout<<"     probed n = "<<n[1]<<" with "<<Bps[1]<<" Bps, gradient = "<<Bps_p<<" Bps"<<std::endl;

				double new_n_precise = n[0] + alpha * Bps_p;			//calculate the next point (snap to closest integer)
				size_t new_n_nearest = round_limit(new_n_precise);		//calculate the next point (given batch parameters)

				if(new_n_nearest == n[0]){								//if the newest point is the same as the original point
					Bps[0] = Bps[1];									//update the Bps
					//if(n[0] == dn) n[1] = n[0] + h;					//if we're on the left edge, probe forward
					//else n[1] = n[0] - h;								//otherwise probe backwards
					if(VERBOSE)
						std::cout<<"     staying at n = "<<n[0]<<" for now"<<std::endl;
					//return n[1];										//return the probe point

					Bps[0] = 0;											//reset the Bps for the current point
					return n[0];										//return the current point for a re-calculation
				}
				else{													//if the newest point is different from the original point
					n[0] = new_n_nearest;								//move to the new point
					Bps[0] = 0;											//set the Bps to zero (point hasn't been tested)
					if(VERBOSE)
						std::cout<<"     moving to n = "<<n[0]<<std::endl;
					return n[0];										//return the new point
				}
			}
		}
	}

	/*// this function updates the optimizer, given the number of bytes processed in an interval and time spent processing
	size_t update(size_t bytes_processed, size_t ms_spent){
		interval_B += bytes_processed;		//increment the number of bytes processed
		interval_ms += ms_spent;			//increment the number of milliseconds spent processing

		//if we have sufficient information to evaluate the optimization function at this point
		if(interval_ms >= window_ms){					//if sufficient time has passed to get a reliable Bps measurement
			size_t new_Bps = interval_B / interval_ms;	//calculate the current Bps

			if(sample_step){							//if this is a sample step, collect the information for Bps = f(n0)
				Bps = new_Bps;							//set the Bps to the evaluated value
				n[1] = n[0] - dn;								//reduce the batch size by one delta to take a second sample
				if(n[1] == 0){							//if the resulting batch size is zero
					n[1] = 2*dn;						//we're at the left edge: set the new sample point to 2*dn
				}

				interval_B = interval_ms = 0;			//start a new interval at the new sample point
				sample_step = false;					//next step will calculate the new batch size via optimization
				return n[1];								//return the new batch size
			}
			else{								//if we have sufficient information to evaluate the derivative and optimize
				double f = (double)new_Bps;				//we have evaluated the function at this location
				double fprime;
				if(n[1] < n[0] ){									//if the new point is less than the previous point (usually the case)
					fprime = (double)(Bps - new_Bps) / (double)dn;	//calculate the forward difference
				}
				else{												//if the new point is larger (only happens at the minimum limit)
					fprime = (double)(new_Bps - Bps) / (double)dn;	//calculate the backward difference
				}
				size_t bestn = n[1] - (size_t)(f / fprime);			//calculate the best value for B using Newton's method
				n[0] = round_limit( (size_t)bestn );						//set the new dependent point
				sample_step = true;									//the next step will be a sample step
			}

		}
		if(sample_step) return n[0];
		return n[1];										//insufficient information, keep the same batch size
	}*/

	/*size_t update(size_t bytes_processed, size_t ms_spent){
		interval_B += bytes_processed;		//increment the number of bytes processed
		interval_ms += ms_spent;			//increment the number of milliseconds spent processing

		//if( Bps[0] == 0 ){				//if the left boundary hasn't been processed


		//if we have sufficient information to evaluate the optimization function at this point
		if(interval_ms >= window_ms){
			size_t new_Bps = interval_B / interval_ms;	//calculate the current Bps

			if(Bps[0] == 0)							//if the left interval Bps hasn't been calculated
				Bps[0] = interval_B / interval_ms;	//that is the interval being processed
			else
				Bps[1] = interval_B / interval_ms;	//otherwise the right interval is being processed

			if(Bps[0] != 0 && Bps[1] != 0){			//if both intervals have been processed


		}
	}*/

	/*size_t update(size_t bytes_processed, size_t ms_spent, size_t& data_rate, bool VERBOSE){
		size_t time = update(bytes_processed, ms_spent, VERBOSE);
		data_rate = Bps[0];
		return time;
	}*/
};

/** This class manages the streaming of large multidimensional binary files.
 *  Generally these are hyperspectral files with 2 spatial and 1 spectral dimension. However, this class supports
 *  other dimensions via the template parameter D.
 *
 *  @param T is the data type used to store data to disk (generally float or double)
 *  @param D is the dimension of the data (default 3)
 */
template< typename T, unsigned int D = 3 >
class binary{

protected:
	std::fstream file;		//file stream used for reading and writing
	std::string name;		//file name

	unsigned long long R[D];		//resolution
	unsigned long long header;	//header size (in bytes)
	unsigned char* mask;	//pointer to a character array: 0 = background, 1 = foreground (or valid data)

	double progress;		//stores the progress on the current operation (accessible using a thread)
	size_t data_rate;		//data rate (currently in Bps)

	size_t buffer_size;		//available memory for processing large files

	/// Private initialization function used to set default parameters in the data structure.
	void init(){
		std::memset(R, 0, sizeof(unsigned long long) * D);		//initialize the resolution to zero
		header = 0;											//initialize the header size to zero
		mask = NULL;

		progress = 0;										//initialize the progress for any algorithm to zero
		data_rate = 0;										//initialize the data rate to zero
		set_buffer_frac();										//set the maximum buffer size to the default
	}

	/// Private helper function that returns the size of the file on disk using system functions.
	long long int get_file_size(){
#ifdef _WIN32
		struct _stat64 results;
		if(_stat64(name.c_str(), &results) == 0)
			return results.st_size;
#else
		struct stat results;
		if(stat(name.c_str(), &results) == 0)
			return results.st_size;
#endif
		else return 0;
	}

	/// Private helper function that tests to make sure that the calculated data size specified by the structure is the same as the data size on disk.
	bool test_file_size(){
		long long int npts = 1;				//initialize the number of data points to 1
		for(unsigned int i = 0; i<D; i++)	//iterate over each dimension
			npts *= R[i];					//compute the total number of data points in the file
		long long int datasize = npts * sizeof(T);//multiply the sum by the size of the template parameter

		if(datasize + header == get_file_size()) return true;	//if the byte size matches the file size, we're golden
		else return false;					//otherwise return an error

	}

	/// Private helper function that resets the file pointer to the beginning of the data

	void reset(){
		file.seekg(header, std::ios_base::beg);
	}

	/// Private helper file that opens a specified binary file.

	/// @param filename is the name of the binary file to stream
	bool open_file(std::string filename){
		//open the file as binary for reading and writing
		file.open(filename.c_str(), std::ios::in | std::ios::out | std::ios::binary);

		//if the file isn't open, the user may only have read access
		if(!file.is_open()){
			std::cout<<"class STIM::BINARY - failed to open file, trying for read only"<<std::endl;
			file.open(filename.c_str(), std::ios::in | std::ios::binary);
			if(!file.is_open()){
				std::cout<<"               still unable to load the file"<<std::endl;
				return false;
			}
		}

		//if the file is successful
		if(file){
			name = filename;		//set the name
			if(test_file_size())	//test the file size
				return true;
		}

		return false;
	}





public:

	//default constructor
	binary(){
		init();
	}

	double get_progress(){
		return progress;
	}

	void reset_progress(){
		progress = 0;
	}

	size_t get_data_rate(){
		return data_rate;
	}

	//specify the maximum fraction of available memory that this class will use for buffering
	void set_buffer_frac(double mem_frac = 0.5){				//default to 50%
#ifdef _WIN32
		MEMORYSTATUSEX statex;
		statex.dwLength = sizeof (statex);
		GlobalMemoryStatusEx (&statex);
		buffer_size = (size_t)(statex.ullAvailPhys * mem_frac);
#else
		size_t pages = sysconf(_SC_PHYS_PAGES);
		size_t page_size = sysconf(_SC_PAGE_SIZE);
		buffer_size = (size_t)(pages * page_size *  mem_frac);
#endif
	}

	void set_buffer_raw(size_t bytes){
		buffer_size = bytes;
	}

	/// Open a binary file for streaming.

	/// @param filename is the name of the binary file
	/// @param r is a STIM vector specifying the size of the binary file along each dimension
	/// @param h is the length (in bytes) of any header file (default zero)
	bool open(std::string filename, vec<unsigned long long> r, unsigned long long h = 0){

		for(unsigned long long i = 0; i < D; i++)		//set the dimensions of the binary file object
			R[i] = r[i];

		header = h;				//save the header size

		if(!open_file(filename)) return false;	//open the binary file

		//reset();

		return test_file_size();
	}

	/// Creates a new binary file for streaming

	/// @param filename is the name of the binary file to be created
	/// @param r is a STIM vector specifying the size of the file along each dimension
	/// @offset specifies how many bytes to offset the file (used to leave room for a header)
	bool create(std::string filename, vec<unsigned long long> r, unsigned long long offset = 0){

		std::ofstream target(filename.c_str(), std::ios::binary);

		//initialize binary file
		T p = 0;
		for(unsigned long long i =0; i < r[0] * r[1] * r[2]; i++){
			target.write((char*)(&p), sizeof(T));
		}

		for(unsigned long long i = 0; i < D; i++)		//set the dimensions of the binary file object
			R[i] = r[i];

		header = offset;				//save the header size

		if(!open_file(filename)) return false;	//open the binary file

		return test_file_size();
	}

	/// Writes a single page of data to disk. A page consists of a sequence of data of size R[0] * R[1] * ... * R[D-1].

	/// @param p is a pointer to the data to be written
	/// @param page is the page number (index of the highest-numbered dimension)
	bool write_page( T * p, unsigned long long page){

		if(p == NULL){
			std::cout<<"ERROR: unable to write into file, empty pointer"<<std::endl;
			exit(1);
		}

		file.seekg(R[1] * R[0] * page * sizeof(T) + header, std::ios::beg);   //seek to the desired location on disk
		file.write((char *)p, R[0] * R[1] * sizeof(T));				 //write binary data

		return true;
	}

	/// Reads a page from disk. A page consists of a sequence of data of size R[0] * R[1] * ... * R[D-1].

	/// @param p is a pointer to pre-allocated memory equal to the page size
	/// @param page is the index of the page
	bool read_page( T * p, unsigned long long page, bool PROGRESS = false){

		if(PROGRESS) progress = 0;

		if (page >= R[2]){										//make sure the bank number is right
			std::cout<<"ERROR: page out of range"<<std::endl;
			return false;
		}

		file.seekg(R[1] * R[0] * page * sizeof(T) + header, std::ios::beg);   //write into memory from the binary file
		file.read((char *)p, R[0] * R[1] * sizeof(T));
		if(PROGRESS) progress = 100;
		return true;
	}



	///Reads a line Z (slowest dimension) for a given XY value

	/// @param p is a pointer to pre-allocated memory equal to the line size R[2]
	/// @param x is the x coordinate
	/// @param y is the y coordinate
	void read_line_2( T* p, size_t n, bool PROGRESS = false){
		unsigned long long i;

		if(PROGRESS) progress = 0;

		if ( n > R[0] * R[1]){							//make sure the sample and line number is right
			std::cout<<"ERROR: sample or line out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
			exit(1);
		}

		file.seekg(n * sizeof(T), std::ios::beg);           //point to the certain sample and line
		for (i = 0; i < R[2]; i++){							//for each band
			file.read((char *)(p + i), sizeof(T));
			file.seekg((R[1] * R[0] - 1) * sizeof(T), std::ios::cur);    //go to the next band
			if(PROGRESS) progress = (double)i / (double)R[2] * 100;
		}
		if(PROGRESS) progress = 100;
	}
	void read_line_2( T * p, unsigned long long x, unsigned long long y, bool PROGRESS = false){
		read_line_2(p, y * R[0] + x, PROGRESS);
		/*unsigned long long i;

		if(PROGRESS) progress = 0;

		if ( x >= R[0] || y >= R[1]){							//make sure the sample and line number is right
			std::cout<<"ERROR: sample or line out of range"<<std::endl;
			return false;
		}

		file.seekg((x + y * R[0]) * sizeof(T), std::ios::beg);           //point to the certain sample and line
		for (i = 0; i < R[2]; i++)
		{
			file.read((char *)(p + i), sizeof(T));
			file.seekg((R[1] * R[0] - 1) * sizeof(T), std::ios::cur);    //go to the next band
			if(PROGRESS) progress = (double)i / (double)R[2] * 100;
		}
		if(PROGRESS) progress = 100;

		return true;*/
	}

	///Reads a line X (fastest dimension) for a given YZ value

	/// @param p is a pointer to pre-allocated memory equal to the line size R[2]
	/// @param x is the y coordinate
	/// @param y is the z coordinate
	bool read_line_0(T * p, unsigned long long y, unsigned long long z, bool PROGRESS = false){
		//test to make sure the specified value is within range
		if( y >= R[1] || z >= R[2] ){
			std::cout<<"ERROR: sample ("<<y<<", "<<z<<") out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
			return false;
		}

		file.seekg((z * R[0] * R[1] + y * R[0]) * sizeof(T), std::ios::beg);	//seek to the start of the line
		file.read((char *)p, sizeof(T) * R[0]);									//read the line
		if(PROGRESS) progress = 100;
		return true;
	}

	///Reads a line Y (second fastest dimension) for a given XZ value

	/// @param p is a pointer to pre-allocated memory equal to the line size R[2]
	/// @param x is the y coordinate
	/// @param z is the z coordinate
	bool read_line_1(T * p, unsigned long long x, unsigned long long z, bool PROGRESS = false){
		if(PROGRESS) progress = 0;
		//test to make sure the specified value is within range
		if( x >= R[0] || z >= R[2] ){
			std::cout<<"ERROR: sample or line out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
			return false;
		}

		file.seekg((z * R[0] * R[1] + x) * sizeof(T), std::ios::beg);           //seek to the start of the line
		for (unsigned long long i = 0; i < R[1]; i++){									//for each pixel in the line
			file.read((char *)(p + i), sizeof(T));					//read the pixel
			file.seekg((R[0] - 1) * sizeof(T), std::ios::cur);		//seek to the next pixel in the line
			if(PROGRESS) progress = (double)i / (double)R[1] * 100;
		}
		if(PROGRESS) progress = 100;
		return true;
	}

	/// Reads a plane given a coordinate along the 0-axis (YZ plane)

	/// @param p is a pointer to pre-allocated memory of size R[1] * R[2] * sizeof(T)
	/// @param n is the 0-axis coordinate used to retrieve the plane
	bool read_plane_0(T* p, unsigned long long n, bool PROGRESS = false){
		if(PROGRESS) progress = 0;
		if (n >= R[0]){										//make sure the number is within the possible range
			std::cout<<"ERROR: sample or line out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
			return false;
		}
		unsigned long long jump = (R[0] - 1) * sizeof(T);		//number of bytes to skip between samples

		//seek to the start of the plane
		file.seekg(n * sizeof(T), std::ios::beg);

		unsigned long long N = R[1] * R[2];
		for(unsigned long long i = 0; i<N; i++){
			file.read((char*)(p+i), sizeof(T));
			file.seekg(jump, std::ios::cur);
			if(PROGRESS) progress = (double)(i+1) / N * 100;
		}

		return true;


	}

	/// Reads a plane given a coordinate along the 1-axis (XZ plane)

	/// @param p is a pointer to pre-allocated memory of size R[0] * R[2] * sizeof(T)
	/// @param n is the 1-axis coordinate used to retrieve the plane
	bool read_plane_1(T* p, unsigned long long n, bool PROGRESS = false){
		if(PROGRESS) progress = 0;
		unsigned long long L = R[0] * sizeof(T);		//caculate the number of bytes in a sample line
		unsigned long long jump = R[0] * (R[1] - 1) * sizeof(T);

		if (n >= R[1]){										//make sure the bank number is right
			std::cout<<"ERROR read_plane_1: page out of range"<<std::endl;
			return false;
		}

		file.seekg(R[0] * n * sizeof(T), std::ios::beg);
		for (unsigned long long i = 0; i < R[2]; i++){
			if(PROGRESS) progress = (double)i / R[2] * 100;
			file.read((char *)(p + i * R[0]), L);
			file.seekg( jump, std::ios::cur);
			std::cout<<i<<"    ";
		}

		if(PROGRESS) progress = 100;
		return true;
	}

	/// Reads a plane given a coordinate along the 2-axis (XY plane)

	/// @param p is a pointer to pre-allocated memory of size R[0] * R[1] * sizeof(T)
	/// @param n is the 2-axis coordinate used to retrieve the plane
	bool read_plane_2(T* p, unsigned long long n, bool PROGRESS = false){
		return read_page(p, n, PROGRESS);
	}

	/// Reads a single pixel, treating the entire data set as a linear array

	/// @param p is a pointer to pre-allocated memory of size sizeof(T)
	/// @param i is the index to the pixel using linear indexing
	bool read_pixel(T* p, unsigned long long i){
		if(i >= R[0] * R[1] * R[2]){
			std::cout<<"ERROR read_pixel: n is out of range"<<std::endl;
			return false;
		}

		file.seekg(i * sizeof(T), std::ios::cur);
		file.read((char*)p, sizeof(T));

	}

	/// Reads a single pixel, given an x, y, z coordinate

	/// @param p is a pointer to pre-allocated memory of size sizeof(T)
	/// @param x is the x (0) axis coordinate
	/// @param y is the y (1) axis coordinate
	/// @param z is the z (2) axis coordinate
	bool read_pixel(T* p, unsigned long long x, unsigned long long y, unsigned long long z){

		if(x < 0 || x >= R[0] || y < 0 || y >= R[1] || z < 0 || z > R[2]){
			std::cout<<"ERROR read_pixel: (x,y,z) is out of range"<<std::endl;
			return false;
		}

		unsigned long long i = z * R[0] * R[1] + y * R[0] + z;
		return read_pixel(p, i);
	}

	/// Reads a block specified by an (x, y, z) position and size using the largest possible contiguous reads
	size_t read(T* dest, size_t x, size_t y, size_t z, size_t sx, size_t sy, size_t sz){
		auto t0 = std::chrono::high_resolution_clock::now();
		size_t size_bytes = sx * sy * sz * sizeof(T);					//size of the block to read in bytes

		size_t start = z * R[0] * R[1] + y * R[0] + x;						//calculate the start postion
		size_t start_bytes = start * sizeof(T);							//start position in bytes
		file.seekg(start * sizeof(T), std::ios::beg);					//seek to the start position

		
		if(sx == R[0] && sy == R[1]){				//if sx and sy result in a contiguous volume along z
			file.read((char*)dest, size_bytes);			//read the block in one pass
		}
		else if(sx == R[0]){												//if sx is contiguous, read each z-axis slice can be read in one pass
			size_t jump_bytes = (R[1] - sy) * R[0] * sizeof(T);		//jump between each slice
			size_t slice_bytes = sx * sy * sizeof(T);				//size of the slice to be read
			for(size_t zi = 0; zi < sz; zi++){						//for each z-axis slice
				file.read((char*)dest, slice_bytes);						//read the slice
				dest += sx * sy;									//move the destination pointer to the next slice
				file.seekg(jump_bytes, std::ios::cur);				//skip to the next slice in the file
			}
		}
		else{
			//in this case, x is not contiguous so the volume must be read line-by-line
			size_t jump_x_bytes = (R[0] - sx) * sizeof(T);				//number of bytes skipped in the x direction
			size_t jump_y_bytes = (R[1] - sy) * R[0] * sizeof(T) + jump_x_bytes;	//number of bytes skipped between slices
			size_t line_bytes = sx * sizeof(T);							//size of the line to be read
			size_t zi, yi;
			for(zi = 0; zi < sz; zi++){									//for each slice
				file.read((char*)dest, line_bytes);							//read the first line
				for(yi = 1; yi < sy; yi++){								//read each additional line
					dest += sx;											//move the pointer in the destination block to the next line
					file.seekg(jump_x_bytes, std::ios::cur);			//skip to the next line in the file
					file.read((char*)dest, line_bytes);						//read the line to the destination block
				}
				file.seekg(jump_y_bytes, std::ios::cur);				//skip to the beginning of the next slice
			}
		}
		auto t1 = std::chrono::high_resolution_clock::now();
		return std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0).count();
	}

	// permutes a block of data from the current interleave to the interleave specified (re-arranged dimensions to the order specified by [d0, d1, d2])

	size_t permute(T* dest, T* src, size_t sx, size_t sy, size_t sz, size_t d0, size_t d1, size_t d2){
		std::chrono::high_resolution_clock::time_point t0, t1;
		t0 = std::chrono::high_resolution_clock::now();

#ifdef CUDA_FOUND
		T* gpu_src;
		HANDLE_ERROR( cudaMalloc(&gpu_src, sx*sy*sz*sizeof(T)) );
		HANDLE_ERROR( cudaMemcpy(gpu_src, src, sx*sy*sz*sizeof(T), cudaMemcpyHostToDevice) );
		T* gpu_dest;
		HANDLE_ERROR( cudaMalloc(&gpu_dest, sx*sy*sz*sizeof(T)) );		
		gpu_permute((char*)gpu_dest, (char*)gpu_src, sx, sy, sz, d0, d1, d2, sizeof(T));
		HANDLE_ERROR( cudaMemcpy(dest, gpu_dest, sx*sy*sz*sizeof(T), cudaMemcpyDeviceToHost) );
		HANDLE_ERROR( cudaFree(gpu_src) );
		HANDLE_ERROR( cudaFree(gpu_dest) );
		t1 = std::chrono::high_resolution_clock::now();
		return std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0).count();
		
#endif
		
		size_t d[3] = {d0, d1, d2};
		size_t s[3] = {sx, sy, sz};
		size_t p[3];
		
		if(d[0] == 0 && d[1] == 1 && d[2] == 2){
			//this isn't actually a permute - just copy the data
			memcpy(dest, src, sizeof(T) * sx * sy * sz);
		}
		else if(d[0] == 0){						//the individual lines are contiguous, so you can memcpy line-by-line
			size_t y, z;
			size_t src_idx, dest_idx;
			size_t x_bytes = sizeof(T) * sx;
			for(z = 0; z < sz; z++){
				p[2] = z;
				for(y = 0; y < sy; y++){
					p[1] = y;
					src_idx = z * sx * sy + y * sx;
					dest_idx = p[d[2]] * s[d[0]] * s[d[1]] + p[d[1]] * s[d[0]];
					memcpy(dest + dest_idx, src + src_idx, x_bytes);
				}
			}
		}
		else{									//loop through every damn point
			size_t x, y, z;
			size_t src_idx, dest_idx;
			size_t src_z, src_y;
			for(z = 0; z < sz; z++){
				p[2] = z;
				src_z = z * sx * sy;
				for(y = 0; y < sy; y++){
					p[1] = y;
					src_y = src_z + y * sx;
					for(x = 0; x < sx; x++){
						p[0] = x;
						src_idx = src_y + x;
						dest_idx = p[d[2]] * s[d[0]] * s[d[1]] + p[d[1]] * s[d[0]] + p[d[0]];
						dest[dest_idx] = src[src_idx];
					}
				}
			}
		}
		t1 = std::chrono::high_resolution_clock::now();
		return std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0).count();
	}

};

}

#endif