binary.h
26.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
//make sure that this header file is only loaded once
#ifndef RTS_BINARY_H
#define RTS_BINARY_H
#include "../envi/envi_header.h"
#include "../math/vector.h"
#include <fstream>
#include <sys/stat.h>
#include <cstring>
#include <chrono>
#ifdef _WIN32
#include <Windows.h>
#else
#include <unistd.h>
#endif
#ifdef CUDA_FOUND
//CUDA externs
void gpu_permute(char* dest, char* src, size_t sx, size_t sy, size_t sz, size_t d0, size_t d1, size_t d2, size_t typesize);
#include <stim/cuda/cudatools/error.h>
#endif
namespace stim{
/// This class calculates the optimal setting for independent parameter b (batch size) for
/// minimizing the dependent parameter bps (bytes per second)
class stream_optimizer{
protected:
size_t Bps[2]; //bytes per second for the previous batch
size_t interval_B; //number of bytes processed this interval
size_t interval_ms; //number of milliseconds spent in the current interval
size_t n[2]; //current batch size (in bytes)
size_t h; //spacing used for finite difference calculations
size_t dn; //delta value (in bytes) for setting the batch size (minimum change in batch parameter)
size_t maxn; //maximum value for the batch size
double alpha; //alpha value controls the factor of the gradient that is used to calculate the next point (speed of convergence)
bool sample_step; //calculating the derivative (this class alternates between calculating dBps and B)
bool forward_diff; //evaluate the derivative using forward differences
size_t window_ms; //size of the interval (in milliseconds) integrated to get a reliable bps value
// This function rounds x to the nearest value within dB
size_t round_limit(double n0){
if(n0 < 0) return dn; //if n0 is less than zero, return the lowest possible n
size_t new_n = (size_t)(n0 + 0.5); //now n0 must be positive, so round it to the nearest integer
if(new_n > maxn) new_n = maxn; //limit the returned size of x to within the specified bounds
size_t lowest = new_n / dn;
size_t highest = lowest + dn;
size_t diff[2] = {new_n - lowest, highest - new_n}; //calculate the two differences
if(diff[0] < diff[1])
return lowest;
return highest;
}
public:
//constructor initializes a stream optimizer
stream_optimizer(size_t min_batch_size, size_t max_batch_size, double a = 0.003, size_t probe_step = 5, size_t window = 2000){
//Bps = 0; //initialize to zero bytes per second processed
Bps[0] = Bps[1] = 0; //initialize the bits per second to 0
interval_B = 0; //zero bytes have been processed at initialization
interval_ms = 0; //no time has been spent on the batch so far
dn = min_batch_size; //set the minimum batch size as the minimum change in batch size
maxn = max_batch_size; //set the maximum batch size
n[0] = max_batch_size; //set B
h = (max_batch_size / min_batch_size) / probe_step * dn;
std::cout<<"h = "<<h<<std::endl;
if(h < dn) h = dn;
alpha = a;
//n[0] = round_limit( (max_batch_size - min_batch_size)/2 );
window_ms = window; //minimum integration interval (for getting a reliable bps measure)
sample_step = true; //the first step is to calculate the derivative
forward_diff = true; //start with the forward difference (since we start at the maximum batch size)
}
size_t update(size_t bytes_processed, size_t ms_spent, size_t& data_rate, bool VERBOSE = false){
interval_B += bytes_processed; //increment the number of bytes processed
interval_ms += ms_spent; //increment the number of milliseconds spent processing
data_rate = interval_B / interval_ms;
//if we have sufficient information to evaluate the optimization function at this point
if(interval_ms < window_ms){ //if insufficient time has passed to get a reliable Bps measurement
return n[0];
}
else{ //if we have collected enough information for a reliable Bps estimate
if(Bps[0] == 0){ //if n[0] hasn't been evaluated yet, this is the first step
Bps[0] = data_rate; //set the initial Bps value
n[1] = n[0] - h; //set the position of the next sample point
if(VERBOSE)
std::cout<<"Bps value at n = "<<n[0]<<" is "<<Bps[0]<<" Bps, probing n = "<<n[1]<<std::endl;
return n[1]; //return the probe point
}
else{
Bps[1] = data_rate; //set the Bps for the current point (n[1])
double Bps_p; //allocate a variable for the derivative
//calculate the derivative
if(n[0] < n[1]){ //if the current point is less than the previous one (probably the most common)
Bps_p = ((double)Bps[1] - (double)Bps[0]) / (double)h; //calculate the derivative using the forward finite difference
}
else{
Bps_p = ((double)Bps[0] - (double)Bps[1]) / (double)h; //calculate the derivative using the backward finite difference
}
if(VERBOSE)
std::cout<<" probed n = "<<n[1]<<" with "<<Bps[1]<<" Bps, gradient = "<<Bps_p<<" Bps"<<std::endl;
double new_n_precise = n[0] + alpha * Bps_p; //calculate the next point (snap to closest integer)
size_t new_n_nearest = round_limit(new_n_precise); //calculate the next point (given batch parameters)
if(new_n_nearest == n[0]){ //if the newest point is the same as the original point
Bps[0] = Bps[1]; //update the Bps
//if(n[0] == dn) n[1] = n[0] + h; //if we're on the left edge, probe forward
//else n[1] = n[0] - h; //otherwise probe backwards
if(VERBOSE)
std::cout<<" staying at n = "<<n[0]<<" for now"<<std::endl;
//return n[1]; //return the probe point
Bps[0] = 0; //reset the Bps for the current point
return n[0]; //return the current point for a re-calculation
}
else{ //if the newest point is different from the original point
n[0] = new_n_nearest; //move to the new point
Bps[0] = 0; //set the Bps to zero (point hasn't been tested)
if(VERBOSE)
std::cout<<" moving to n = "<<n[0]<<std::endl;
return n[0]; //return the new point
}
}
}
}
/*// this function updates the optimizer, given the number of bytes processed in an interval and time spent processing
size_t update(size_t bytes_processed, size_t ms_spent){
interval_B += bytes_processed; //increment the number of bytes processed
interval_ms += ms_spent; //increment the number of milliseconds spent processing
//if we have sufficient information to evaluate the optimization function at this point
if(interval_ms >= window_ms){ //if sufficient time has passed to get a reliable Bps measurement
size_t new_Bps = interval_B / interval_ms; //calculate the current Bps
if(sample_step){ //if this is a sample step, collect the information for Bps = f(n0)
Bps = new_Bps; //set the Bps to the evaluated value
n[1] = n[0] - dn; //reduce the batch size by one delta to take a second sample
if(n[1] == 0){ //if the resulting batch size is zero
n[1] = 2*dn; //we're at the left edge: set the new sample point to 2*dn
}
interval_B = interval_ms = 0; //start a new interval at the new sample point
sample_step = false; //next step will calculate the new batch size via optimization
return n[1]; //return the new batch size
}
else{ //if we have sufficient information to evaluate the derivative and optimize
double f = (double)new_Bps; //we have evaluated the function at this location
double fprime;
if(n[1] < n[0] ){ //if the new point is less than the previous point (usually the case)
fprime = (double)(Bps - new_Bps) / (double)dn; //calculate the forward difference
}
else{ //if the new point is larger (only happens at the minimum limit)
fprime = (double)(new_Bps - Bps) / (double)dn; //calculate the backward difference
}
size_t bestn = n[1] - (size_t)(f / fprime); //calculate the best value for B using Newton's method
n[0] = round_limit( (size_t)bestn ); //set the new dependent point
sample_step = true; //the next step will be a sample step
}
}
if(sample_step) return n[0];
return n[1]; //insufficient information, keep the same batch size
}*/
/*size_t update(size_t bytes_processed, size_t ms_spent){
interval_B += bytes_processed; //increment the number of bytes processed
interval_ms += ms_spent; //increment the number of milliseconds spent processing
//if( Bps[0] == 0 ){ //if the left boundary hasn't been processed
//if we have sufficient information to evaluate the optimization function at this point
if(interval_ms >= window_ms){
size_t new_Bps = interval_B / interval_ms; //calculate the current Bps
if(Bps[0] == 0) //if the left interval Bps hasn't been calculated
Bps[0] = interval_B / interval_ms; //that is the interval being processed
else
Bps[1] = interval_B / interval_ms; //otherwise the right interval is being processed
if(Bps[0] != 0 && Bps[1] != 0){ //if both intervals have been processed
}
}*/
/*size_t update(size_t bytes_processed, size_t ms_spent, size_t& data_rate, bool VERBOSE){
size_t time = update(bytes_processed, ms_spent, VERBOSE);
data_rate = Bps[0];
return time;
}*/
};
/** This class manages the streaming of large multidimensional binary files.
* Generally these are hyperspectral files with 2 spatial and 1 spectral dimension. However, this class supports
* other dimensions via the template parameter D.
*
* @param T is the data type used to store data to disk (generally float or double)
* @param D is the dimension of the data (default 3)
*/
template< typename T, unsigned int D = 3 >
class binary{
protected:
std::fstream file; //file stream used for reading and writing
std::string name; //file name
unsigned long long R[D]; //resolution
unsigned long long header; //header size (in bytes)
unsigned char* mask; //pointer to a character array: 0 = background, 1 = foreground (or valid data)
double progress; //stores the progress on the current operation (accessible using a thread)
size_t data_rate; //data rate (currently in Bps)
size_t buffer_size; //available memory for processing large files
/// Private initialization function used to set default parameters in the data structure.
void init(){
std::memset(R, 0, sizeof(unsigned long long) * D); //initialize the resolution to zero
header = 0; //initialize the header size to zero
mask = NULL;
progress = 0; //initialize the progress for any algorithm to zero
data_rate = 0; //initialize the data rate to zero
set_buffer_frac(); //set the maximum buffer size to the default
}
/// Private helper function that returns the size of the file on disk using system functions.
long long int get_file_size(){
#ifdef _WIN32
struct _stat64 results;
if(_stat64(name.c_str(), &results) == 0)
return results.st_size;
#else
struct stat results;
if(stat(name.c_str(), &results) == 0)
return results.st_size;
#endif
else return 0;
}
/// Private helper function that tests to make sure that the calculated data size specified by the structure is the same as the data size on disk.
bool test_file_size(){
long long int npts = 1; //initialize the number of data points to 1
for(unsigned int i = 0; i<D; i++) //iterate over each dimension
npts *= R[i]; //compute the total number of data points in the file
long long int datasize = npts * sizeof(T);//multiply the sum by the size of the template parameter
if(datasize + header == get_file_size()) return true; //if the byte size matches the file size, we're golden
else return false; //otherwise return an error
}
/// Private helper function that resets the file pointer to the beginning of the data
void reset(){
file.seekg(header, std::ios_base::beg);
}
/// Private helper file that opens a specified binary file.
/// @param filename is the name of the binary file to stream
bool open_file(std::string filename){
//open the file as binary for reading and writing
file.open(filename.c_str(), std::ios::in | std::ios::out | std::ios::binary);
//if the file isn't open, the user may only have read access
if(!file.is_open()){
std::cout<<"class STIM::BINARY - failed to open file, trying for read only"<<std::endl;
file.open(filename.c_str(), std::ios::in | std::ios::binary);
if(!file.is_open()){
std::cout<<" still unable to load the file"<<std::endl;
return false;
}
}
//if the file is successful
if(file){
name = filename; //set the name
if(test_file_size()) //test the file size
return true;
}
return false;
}
public:
//default constructor
binary(){
init();
}
double get_progress(){
return progress;
}
void reset_progress(){
progress = 0;
}
size_t get_data_rate(){
return data_rate;
}
//specify the maximum fraction of available memory that this class will use for buffering
void set_buffer_frac(double mem_frac = 0.5){ //default to 50%
#ifdef _WIN32
MEMORYSTATUSEX statex;
statex.dwLength = sizeof (statex);
GlobalMemoryStatusEx (&statex);
buffer_size = (size_t)(statex.ullAvailPhys * mem_frac);
#else
size_t pages = sysconf(_SC_PHYS_PAGES);
size_t page_size = sysconf(_SC_PAGE_SIZE);
buffer_size = (size_t)(pages * page_size * mem_frac);
#endif
}
void set_buffer_raw(size_t bytes){
buffer_size = bytes;
}
/// Open a binary file for streaming.
/// @param filename is the name of the binary file
/// @param r is a STIM vector specifying the size of the binary file along each dimension
/// @param h is the length (in bytes) of any header file (default zero)
bool open(std::string filename, vec<unsigned long long> r, unsigned long long h = 0){
for(unsigned long long i = 0; i < D; i++) //set the dimensions of the binary file object
R[i] = r[i];
header = h; //save the header size
if(!open_file(filename)) return false; //open the binary file
//reset();
return test_file_size();
}
/// Creates a new binary file for streaming
/// @param filename is the name of the binary file to be created
/// @param r is a STIM vector specifying the size of the file along each dimension
/// @offset specifies how many bytes to offset the file (used to leave room for a header)
bool create(std::string filename, vec<unsigned long long> r, unsigned long long offset = 0){
std::ofstream target(filename.c_str(), std::ios::binary);
//initialize binary file
T p = 0;
for(unsigned long long i =0; i < r[0] * r[1] * r[2]; i++){
target.write((char*)(&p), sizeof(T));
}
for(unsigned long long i = 0; i < D; i++) //set the dimensions of the binary file object
R[i] = r[i];
header = offset; //save the header size
if(!open_file(filename)) return false; //open the binary file
return test_file_size();
}
/// Writes a single page of data to disk. A page consists of a sequence of data of size R[0] * R[1] * ... * R[D-1].
/// @param p is a pointer to the data to be written
/// @param page is the page number (index of the highest-numbered dimension)
bool write_page( T * p, unsigned long long page){
if(p == NULL){
std::cout<<"ERROR: unable to write into file, empty pointer"<<std::endl;
exit(1);
}
file.seekg(R[1] * R[0] * page * sizeof(T) + header, std::ios::beg); //seek to the desired location on disk
file.write((char *)p, R[0] * R[1] * sizeof(T)); //write binary data
return true;
}
/// Reads a page from disk. A page consists of a sequence of data of size R[0] * R[1] * ... * R[D-1].
/// @param p is a pointer to pre-allocated memory equal to the page size
/// @param page is the index of the page
bool read_page( T * p, unsigned long long page, bool PROGRESS = false){
if(PROGRESS) progress = 0;
if (page >= R[2]){ //make sure the bank number is right
std::cout<<"ERROR: page out of range"<<std::endl;
return false;
}
file.seekg(R[1] * R[0] * page * sizeof(T) + header, std::ios::beg); //write into memory from the binary file
file.read((char *)p, R[0] * R[1] * sizeof(T));
if(PROGRESS) progress = 100;
return true;
}
///Reads a line Z (slowest dimension) for a given XY value
/// @param p is a pointer to pre-allocated memory equal to the line size R[2]
/// @param x is the x coordinate
/// @param y is the y coordinate
void read_line_2( T* p, size_t n, bool PROGRESS = false){
unsigned long long i;
if(PROGRESS) progress = 0;
if ( n > R[0] * R[1]){ //make sure the sample and line number is right
std::cout<<"ERROR: sample or line out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
exit(1);
}
file.seekg(n * sizeof(T), std::ios::beg); //point to the certain sample and line
for (i = 0; i < R[2]; i++){ //for each band
file.read((char *)(p + i), sizeof(T));
file.seekg((R[1] * R[0] - 1) * sizeof(T), std::ios::cur); //go to the next band
if(PROGRESS) progress = (double)i / (double)R[2] * 100;
}
if(PROGRESS) progress = 100;
}
void read_line_2( T * p, unsigned long long x, unsigned long long y, bool PROGRESS = false){
read_line_2(p, y * R[0] + x, PROGRESS);
/*unsigned long long i;
if(PROGRESS) progress = 0;
if ( x >= R[0] || y >= R[1]){ //make sure the sample and line number is right
std::cout<<"ERROR: sample or line out of range"<<std::endl;
return false;
}
file.seekg((x + y * R[0]) * sizeof(T), std::ios::beg); //point to the certain sample and line
for (i = 0; i < R[2]; i++)
{
file.read((char *)(p + i), sizeof(T));
file.seekg((R[1] * R[0] - 1) * sizeof(T), std::ios::cur); //go to the next band
if(PROGRESS) progress = (double)i / (double)R[2] * 100;
}
if(PROGRESS) progress = 100;
return true;*/
}
///Reads a line X (fastest dimension) for a given YZ value
/// @param p is a pointer to pre-allocated memory equal to the line size R[2]
/// @param x is the y coordinate
/// @param y is the z coordinate
bool read_line_0(T * p, unsigned long long y, unsigned long long z, bool PROGRESS = false){
//test to make sure the specified value is within range
if( y >= R[1] || z >= R[2] ){
std::cout<<"ERROR: sample ("<<y<<", "<<z<<") out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
return false;
}
file.seekg((z * R[0] * R[1] + y * R[0]) * sizeof(T), std::ios::beg); //seek to the start of the line
file.read((char *)p, sizeof(T) * R[0]); //read the line
if(PROGRESS) progress = 100;
return true;
}
///Reads a line Y (second fastest dimension) for a given XZ value
/// @param p is a pointer to pre-allocated memory equal to the line size R[2]
/// @param x is the y coordinate
/// @param z is the z coordinate
bool read_line_1(T * p, unsigned long long x, unsigned long long z, bool PROGRESS = false){
if(PROGRESS) progress = 0;
//test to make sure the specified value is within range
if( x >= R[0] || z >= R[2] ){
std::cout<<"ERROR: sample or line out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
return false;
}
file.seekg((z * R[0] * R[1] + x) * sizeof(T), std::ios::beg); //seek to the start of the line
for (unsigned long long i = 0; i < R[1]; i++){ //for each pixel in the line
file.read((char *)(p + i), sizeof(T)); //read the pixel
file.seekg((R[0] - 1) * sizeof(T), std::ios::cur); //seek to the next pixel in the line
if(PROGRESS) progress = (double)i / (double)R[1] * 100;
}
if(PROGRESS) progress = 100;
return true;
}
/// Reads a plane given a coordinate along the 0-axis (YZ plane)
/// @param p is a pointer to pre-allocated memory of size R[1] * R[2] * sizeof(T)
/// @param n is the 0-axis coordinate used to retrieve the plane
bool read_plane_0(T* p, unsigned long long n, bool PROGRESS = false){
if(PROGRESS) progress = 0;
if (n >= R[0]){ //make sure the number is within the possible range
std::cout<<"ERROR: sample or line out of range in "<<__FILE__<<" (line "<<__LINE__<<")"<<std::endl;
return false;
}
unsigned long long jump = (R[0] - 1) * sizeof(T); //number of bytes to skip between samples
//seek to the start of the plane
file.seekg(n * sizeof(T), std::ios::beg);
unsigned long long N = R[1] * R[2];
for(unsigned long long i = 0; i<N; i++){
file.read((char*)(p+i), sizeof(T));
file.seekg(jump, std::ios::cur);
if(PROGRESS) progress = (double)(i+1) / N * 100;
}
return true;
}
/// Reads a plane given a coordinate along the 1-axis (XZ plane)
/// @param p is a pointer to pre-allocated memory of size R[0] * R[2] * sizeof(T)
/// @param n is the 1-axis coordinate used to retrieve the plane
bool read_plane_1(T* p, unsigned long long n, bool PROGRESS = false){
if(PROGRESS) progress = 0;
unsigned long long L = R[0] * sizeof(T); //caculate the number of bytes in a sample line
unsigned long long jump = R[0] * (R[1] - 1) * sizeof(T);
if (n >= R[1]){ //make sure the bank number is right
std::cout<<"ERROR read_plane_1: page out of range"<<std::endl;
return false;
}
file.seekg(R[0] * n * sizeof(T), std::ios::beg);
for (unsigned long long i = 0; i < R[2]; i++){
if(PROGRESS) progress = (double)i / R[2] * 100;
file.read((char *)(p + i * R[0]), L);
file.seekg( jump, std::ios::cur);
std::cout<<i<<" ";
}
if(PROGRESS) progress = 100;
return true;
}
/// Reads a plane given a coordinate along the 2-axis (XY plane)
/// @param p is a pointer to pre-allocated memory of size R[0] * R[1] * sizeof(T)
/// @param n is the 2-axis coordinate used to retrieve the plane
bool read_plane_2(T* p, unsigned long long n, bool PROGRESS = false){
return read_page(p, n, PROGRESS);
}
/// Reads a single pixel, treating the entire data set as a linear array
/// @param p is a pointer to pre-allocated memory of size sizeof(T)
/// @param i is the index to the pixel using linear indexing
bool read_pixel(T* p, unsigned long long i){
if(i >= R[0] * R[1] * R[2]){
std::cout<<"ERROR read_pixel: n is out of range"<<std::endl;
return false;
}
file.seekg(i * sizeof(T), std::ios::cur);
file.read((char*)p, sizeof(T));
}
/// Reads a single pixel, given an x, y, z coordinate
/// @param p is a pointer to pre-allocated memory of size sizeof(T)
/// @param x is the x (0) axis coordinate
/// @param y is the y (1) axis coordinate
/// @param z is the z (2) axis coordinate
bool read_pixel(T* p, unsigned long long x, unsigned long long y, unsigned long long z){
if(x < 0 || x >= R[0] || y < 0 || y >= R[1] || z < 0 || z > R[2]){
std::cout<<"ERROR read_pixel: (x,y,z) is out of range"<<std::endl;
return false;
}
unsigned long long i = z * R[0] * R[1] + y * R[0] + z;
return read_pixel(p, i);
}
/// Reads a block specified by an (x, y, z) position and size using the largest possible contiguous reads
size_t read(T* dest, size_t x, size_t y, size_t z, size_t sx, size_t sy, size_t sz){
auto t0 = std::chrono::high_resolution_clock::now();
size_t size_bytes = sx * sy * sz * sizeof(T); //size of the block to read in bytes
size_t start = z * R[0] * R[1] + y * R[0] + x; //calculate the start postion
size_t start_bytes = start * sizeof(T); //start position in bytes
file.seekg(start * sizeof(T), std::ios::beg); //seek to the start position
if(sx == R[0] && sy == R[1]){ //if sx and sy result in a contiguous volume along z
file.read((char*)dest, size_bytes); //read the block in one pass
}
else if(sx == R[0]){ //if sx is contiguous, read each z-axis slice can be read in one pass
size_t jump_bytes = (R[1] - sy) * R[0] * sizeof(T); //jump between each slice
size_t slice_bytes = sx * sy * sizeof(T); //size of the slice to be read
for(size_t zi = 0; zi < sz; zi++){ //for each z-axis slice
file.read((char*)dest, slice_bytes); //read the slice
dest += sx * sy; //move the destination pointer to the next slice
file.seekg(jump_bytes, std::ios::cur); //skip to the next slice in the file
}
}
else{
//in this case, x is not contiguous so the volume must be read line-by-line
size_t jump_x_bytes = (R[0] - sx) * sizeof(T); //number of bytes skipped in the x direction
size_t jump_y_bytes = (R[1] - sy) * R[0] * sizeof(T) + jump_x_bytes; //number of bytes skipped between slices
size_t line_bytes = sx * sizeof(T); //size of the line to be read
size_t zi, yi;
for(zi = 0; zi < sz; zi++){ //for each slice
file.read((char*)dest, line_bytes); //read the first line
for(yi = 1; yi < sy; yi++){ //read each additional line
dest += sx; //move the pointer in the destination block to the next line
file.seekg(jump_x_bytes, std::ios::cur); //skip to the next line in the file
file.read((char*)dest, line_bytes); //read the line to the destination block
}
file.seekg(jump_y_bytes, std::ios::cur); //skip to the beginning of the next slice
}
}
auto t1 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0).count();
}
// permutes a block of data from the current interleave to the interleave specified (re-arranged dimensions to the order specified by [d0, d1, d2])
size_t permute(T* dest, T* src, size_t sx, size_t sy, size_t sz, size_t d0, size_t d1, size_t d2){
std::chrono::high_resolution_clock::time_point t0, t1;
t0 = std::chrono::high_resolution_clock::now();
#ifdef CUDA_FOUND
T* gpu_src;
HANDLE_ERROR( cudaMalloc(&gpu_src, sx*sy*sz*sizeof(T)) );
HANDLE_ERROR( cudaMemcpy(gpu_src, src, sx*sy*sz*sizeof(T), cudaMemcpyHostToDevice) );
T* gpu_dest;
HANDLE_ERROR( cudaMalloc(&gpu_dest, sx*sy*sz*sizeof(T)) );
gpu_permute((char*)gpu_dest, (char*)gpu_src, sx, sy, sz, d0, d1, d2, sizeof(T));
HANDLE_ERROR( cudaMemcpy(dest, gpu_dest, sx*sy*sz*sizeof(T), cudaMemcpyDeviceToHost) );
HANDLE_ERROR( cudaFree(gpu_src) );
HANDLE_ERROR( cudaFree(gpu_dest) );
t1 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0).count();
#endif
size_t d[3] = {d0, d1, d2};
size_t s[3] = {sx, sy, sz};
size_t p[3];
if(d[0] == 0 && d[1] == 1 && d[2] == 2){
//this isn't actually a permute - just copy the data
memcpy(dest, src, sizeof(T) * sx * sy * sz);
}
else if(d[0] == 0){ //the individual lines are contiguous, so you can memcpy line-by-line
size_t y, z;
size_t src_idx, dest_idx;
size_t x_bytes = sizeof(T) * sx;
for(z = 0; z < sz; z++){
p[2] = z;
for(y = 0; y < sy; y++){
p[1] = y;
src_idx = z * sx * sy + y * sx;
dest_idx = p[d[2]] * s[d[0]] * s[d[1]] + p[d[1]] * s[d[0]];
memcpy(dest + dest_idx, src + src_idx, x_bytes);
}
}
}
else{ //loop through every damn point
size_t x, y, z;
size_t src_idx, dest_idx;
size_t src_z, src_y;
for(z = 0; z < sz; z++){
p[2] = z;
src_z = z * sx * sy;
for(y = 0; y < sy; y++){
p[1] = y;
src_y = src_z + y * sx;
for(x = 0; x < sx; x++){
p[0] = x;
src_idx = src_y + x;
dest_idx = p[d[2]] * s[d[0]] * s[d[1]] + p[d[1]] * s[d[0]] + p[d[0]];
dest[dest_idx] = src[src_idx];
}
}
}
}
t1 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0).count();
}
};
}
#endif