scalarbeam.h 19.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
#ifndef RTS_BEAM
#define RTS_BEAM
#include <boost/math/special_functions/bessel.hpp>

#include "../math/vec3.h"
#include "../optics/scalarwave.h"
#include "../math/bessel.h"
#include "../math/legendre.h"
#include "../cuda/cudatools/devices.h"
#include "../cuda/cudatools/timer.h"
#include "../optics/scalarfield.h"
#include <cublas_v2.h>
#include <math_constants.h>
#include <vector>
#include <stdlib.h>



namespace stim{

/// Function returns the value of the scalar field produced by a beam with the specified parameters

template<typename T>
std::vector< stim::vec3<T> > generate_focusing_vectors(size_t N, stim::vec3<T> d, T NA, T NA_in = 0){

	std::vector< stim::vec3<T> > dirs(N);					//allocate an array to store the focusing vectors

	///compute the rotation operator to transform (0, 0, 1) to k
	T cos_angle = d.dot(vec3<T>(0, 0, 1));
	stim::matrix_sq<T, 3> rotation;

	//if the cosine of the angle is -1, the rotation is just a flip across the z axis
	if(cos_angle == -1){
		rotation(2, 2) = -1;
	}
	else if(cos_angle != 1.0)
	{
		vec3<T> r_axis = vec3<T>(0, 0, 1).cross(d).norm();	//compute the axis of rotation
		T angle = acos(cos_angle);							//compute the angle of rotation
		quaternion<T> quat;							//create a quaternion describing the rotation
		quat.CreateRotation(angle, r_axis);
		rotation = quat.toMatrix3();							//compute the rotation matrix
	}

	//find the phi values associated with the cassegrain ring
	T PHI[2];
	PHI[0] = (T)asin(NA);
	PHI[1] = (T)asin(NA_in);

	//calculate the z-axis cylinder coordinates associated with these angles
	T Z[2];
	Z[0] = cos(PHI[0]);
	Z[1] = cos(PHI[1]);
	T range = Z[0] - Z[1];

	//draw a distribution of random phi, z values
	T z, phi, theta;
	//T kmag = stim::TAU / lambda;
	for(int i=0; i<N; i++){								//for each sample
		z = (T)((double)rand() / (double)RAND_MAX) * range + Z[1];			//find a random position on the surface of a cylinder
		theta = (T)(((double)rand() / (double)RAND_MAX) * stim::TAU);
		phi = acos(z);													//project onto the sphere, computing phi in spherical coordinates

		//compute and store cartesian coordinates
		vec3<T> spherical(1, theta, phi);								//convert from spherical to cartesian coordinates
		vec3<T> cart = spherical.sph2cart();
		dirs[i] = rotation * cart;										//create a sample vector
	}
	return dirs;
}

		
/// Calculate the [0 Nl] terms for the aperture integral based on the give numerical aperture and center obscuration (optional)
/// @param C is a pointer to Nl + 1 values where the terms will be stored
template<typename T>
CUDA_CALLABLE void cpu_aperture_integral(T* C, int Nl, T NA, T NA_in = 0){

	size_t table_bytes = (Nl + 1) * sizeof(T);				//calculate the number of bytes required to store the terms
	T cos_alpha_1 = cos(asin(NA_in));						//calculate the cosine of the angle subtended by the central obscuration
	T cos_alpha_2 = cos(asin(NA));							//calculate the cosine of the angle subtended by the aperture

	// the aperture integral is computed using four individual Legendre polynomials, each a function of the angles subtended
	//		by the objective and central obscuration
	T* Pln_a1 = (T*) malloc(table_bytes);
	stim::legendre<T>(Nl-1, cos_alpha_1, &Pln_a1[1]);
	Pln_a1[0] = 1;

	T* Pln_a2 = (T*) malloc(table_bytes);
	stim::legendre<T>(Nl-1, cos_alpha_2, &Pln_a2[1]);
	Pln_a2[0] = 1;

	T* Plp_a1 = (T*) malloc(table_bytes+sizeof(T));
	stim::legendre<T>(Nl+1, cos_alpha_1, Plp_a1);

	T* Plp_a2 = (T*) malloc(table_bytes+sizeof(T));
	stim::legendre<T>(Nl+1, cos_alpha_2, Plp_a2);

	for(size_t l = 0; l <= Nl; l++){
		C[l] = Plp_a1[l+1] - Plp_a2[l+1] - Pln_a1[l] + Pln_a2[l];
	}

	free(Pln_a1);
	free(Pln_a2);
	free(Plp_a1);
	free(Plp_a2);
}

/// performs linear interpolation into a look-up table
template<typename T>
CUDA_CALLABLE void lut_lookup(T* lut_values, T* lut, T val, size_t N, T min_val, T delta, size_t n_vals){
	T idx = ((val - min_val) / delta);
	size_t i = (size_t) idx;
	T a1 = idx - i;
	T a0 = 1 - a1;
	size_t n0 = i * n_vals;
	size_t n1 = (i+1) * n_vals;
	for(size_t n = 0; n < n_vals; n++){
		lut_values[n] = lut[n0 + n] * a0 + lut[n1 + n] * a1;
	}
}

template <typename T>
CUDA_CALLABLE stim::complex<T> clerp(stim::complex<T> v0, stim::complex<T> v1, T t) {
    return stim::complex<T>( fmaf(t, v1.r, fmaf(-t, v0.r, v0.r)), fmaf(t, v1.i, fmaf(-t, v0.i, v0.i)) );
}

template <typename T>
CUDA_CALLABLE T lerp(T v0, T v1, T t) {
    return fmaf(t, v1, fmaf(-t, v0, v0));
}

#ifdef CUDA_FOUND
template<typename T>
__global__ void cuda_scalar_psf(stim::complex<T>* E, size_t N, T* r, T* phi, T A, size_t Nl,
								T* C, 
								T* lut_j, size_t Nj, T min_r, T dr){
	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
	if(i >= N) return;												//exit if this thread is outside the array

	T cos_phi = cos(phi[i]);									//calculate the thread value for cos(phi)
	stim::complex<T> Ei = 0;									//initialize the value of the field to zero
	size_t NC = Nl + 1;										//calculate the number of coefficients to be used

	T fij = (r[i] - min_r)/dr;								//FP index into the spherical bessel LUT
	size_t ij = (size_t) fij;								//convert to an integral index
	T a = fij - ij;											//calculate the fractional portion of the index
	size_t n0j = ij * (NC);									//start of the first entry in the LUT
	size_t n1j = (ij+1) * (NC);								//start of the second entry in the LUT

	T jl;											//declare register to store the spherical bessel function
	T Pl_2, Pl_1;									//declare registers to store the previous two Legendre polynomials
	T Pl = 1;										//initialize the current value for the Legendre polynomial
	stim::complex<T> im(0, 1);						//declare i (imaginary 1)
	stim::complex<T> i_pow(1, 0);					//i_pow stores the current value of i^l so it doesn't have to be re-computed every iteration
	for(int l = 0; l <= Nl; l++){					//for each order
		jl = lerp<T>( lut_j[n0j + l], lut_j[n1j + l], a );	//read jl from the LUT and interpolate the result
		Ei += i_pow * jl * Pl * C[l];				//calculate the value for the field and sum
		i_pow *= im;								//multiply i^l * i for the next iteration
		Pl_2 = Pl_1;								//shift Pl_1 -> Pl_2 and Pl -> Pl_1
		Pl_1 = Pl;
		if(l == 0){									//computing Pl is done recursively, where the recursive relation
			Pl = cos_phi;							//	requires the first two orders. This defines the second.
		}
		else{										//if this is not the first iteration, use the recursive relation to calculate Pl
			Pl = ( (2 * (l+1) - 1) * cos_phi * Pl_1 - (l) * Pl_2 ) / (l+1);
		}
		
	}
	E[i] = Ei * A * 2 * CUDART_PI_F;						//scale the integral by the amplitude
}

template<typename T>
void gpu_scalar_psf_local(stim::complex<T>* E, size_t N, T* r, T* phi, T lambda, T A, T NA, T NA_in, int Nl, T r_spacing){

	//Find the minimum and maximum values of r
    cublasStatus_t stat;
    cublasHandle_t handle;

	stat = cublasCreate(&handle);							//create a cuBLAS handle
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS initialization failed\n");
		exit(1);
	}

	int i_min, i_max;
	stat = cublasIsamin(handle, (int)N, r, 1, &i_min);
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS Error: failed to calculate minimum r value.\n");
		exit(1);
	}
	stat = cublasIsamax(handle, (int)N, r, 1, &i_max);
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS Error: failed to calculate maximum r value.\n");
		exit(1);
	}
	cublasDestroy(handle);

	i_min--;												//cuBLAS uses 1-based indexing for Fortran compatibility
	i_max--;
	T r_min, r_max;											//allocate space to store the minimum and maximum values
	HANDLE_ERROR( cudaMemcpy(&r_min, r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
	HANDLE_ERROR( cudaMemcpy(&r_max, r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );

	T k = (T)stim::TAU / lambda;							//calculate the wavenumber from lambda
	size_t C_bytes = (Nl + 1) * sizeof(T);
	T* C = (T*) malloc( C_bytes );							//allocate space for the aperture integral terms
	cpu_aperture_integral(C, Nl, NA, NA_in);				//calculate the aperture integral terms

	size_t Nlut_j = (size_t)((r_max - r_min) / r_spacing + 1);			//number of values in the look-up table based on the user-specified spacing along r


	size_t lutj_bytes = sizeof(T) * (Nl+1) * Nlut_j;
	T* j_lut = (T*) malloc(lutj_bytes);													//pointer to the look-up table
	T dr = (r_max - r_min) / (Nlut_j-1);												//distance between values in the LUT
	T jl;
	unsigned l;
	for(size_t ri = 0; ri < Nlut_j; ri++){													//for each value in the LUT
		for(l = 0; l <= (unsigned)Nl; l++){													//for each order
			jl = boost::math::sph_bessel<T>(l, k*(r_min + ri * dr));					//use boost to calculate the spherical bessel function
			j_lut[ri * (Nl + 1) + l] = jl;												//store the bessel function result
		}
	}

	//stim::cpu2image<T>(j_lut, "j_lut.bmp", Nl+1, Nlut_j, stim::cmBrewer);
	//Allocate device memory and copy everything to the GPU

	T* gpu_C;
	HANDLE_ERROR( cudaMalloc(&gpu_C, C_bytes) );
	HANDLE_ERROR( cudaMemcpy(gpu_C, C, C_bytes, cudaMemcpyHostToDevice) );
	T* gpu_j_lut;
	HANDLE_ERROR( cudaMalloc(&gpu_j_lut, lutj_bytes) );
	HANDLE_ERROR( cudaMemcpy(gpu_j_lut, j_lut, lutj_bytes, cudaMemcpyHostToDevice) );

	int threads = stim::maxThreadsPerBlock();			//get the maximum number of threads per block for the CUDA device
	dim3 blocks( (unsigned)(N / threads + 1));						//calculate the optimal number of blocks

	cuda_scalar_psf<T><<< blocks, threads >>>(E, N, r, phi, A, Nl, gpu_C, gpu_j_lut, Nlut_j, r_min, dr);

	//free the LUT and condenser tables
	HANDLE_ERROR( cudaFree(gpu_C) );
	HANDLE_ERROR( cudaFree(gpu_j_lut) );
}
#endif

/// Calculate the analytical solution to a scalar point spread function given a set of spherical coordinates about the PSF (beam propagation along phi = theta = 0)
template<typename T>
void cpu_scalar_psf_local(stim::complex<T>* F, size_t N, T* r, T* phi, T lambda, T A, T NA, T NA_in, int Nl){
	T k = (T)stim::TAU / lambda;
	size_t C_bytes = (Nl + 1) * sizeof(T);
	T* C = (T*) malloc( C_bytes );					//allocate space for the aperture integral terms
	cpu_aperture_integral(C, Nl, NA, NA_in);			//calculate the aperture integral terms
	memset(F, 0, N * sizeof(stim::complex<T>));
	T jl, Pl, kr, cos_phi;

	double vm;
	double* jv = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* yv = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* djv= (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) );

	T* Pl_cos_phi = (T*) malloc((Nl + 1) * sizeof(T));

	for(size_t n = 0; n < N; n++){								//for each point in the field
		kr = k * r[n];											//calculate kr (the optical distance between the focal point and p)
		cos_phi = std::cos(phi[n]);								//calculate the cosine of phi
		stim::bessjyv_sph<double>(Nl, kr, vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
		stim::legendre<T>(Nl, cos_phi, Pl_cos_phi);				//calculate the [0 Nl] legendre polynomials for this point

		for(int l = 0; l <= Nl; l++){
			jl = (T)jv[l];
			Pl = Pl_cos_phi[l];
			F[n] += pow(complex<T>(0, 1), l) * jl * Pl * C[l];
		}
		F[n] *= A * stim::TAU;
	}

	free(C);
	free(Pl_cos_phi);
}

/// Converts a set of cartesian points into spherical coordinates surrounding a point spread function (PSF)
/// @param r is the output distance from the PSF
/// @param phi is the non-symmetric direction about the PSF
/// @param x (x, y, z) are the cartesian coordinates in world space
/// @f is the focal point of the PSF in cartesian coordinates
/// @d is the propagation direction of the PSF in cartesian coordinates
template<typename T>
__global__ void cuda_cart2psf(T* r, T* phi, size_t N, T* x, T* y, T* z, stim::vec3<T> f, stim::quaternion<T> q){

	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
	if(i >= N) return;												//exit if this thread is outside the array

	stim::vec3<T> p;									//declare a 3D point
	
	(x == NULL) ? p[0] = 0 : p[0] = x[i];				// test for NULL values and set positions
	(y == NULL) ? p[1] = 0 : p[1] = y[i];
	(z == NULL) ? p[2] = 0 : p[2] = z[i];

	p = p - f;											//shift the point to the center of the PSF (focal point)
	p = q.toMatrix3() * p;								//rotate the point to align with the propagation direction

	stim::vec3<T> ps = p.cart2sph();									//convert from cartesian to spherical coordinates
	r[i] = ps[0];										//store r
	phi[i] = ps[2];										//phi = [0 pi]
}

#ifdef CUDA_FOUND
/// Calculate the analytical solution to a point spread function given a set of points in cartesian coordinates
template<typename T>
void gpu_scalar_psf_cart(stim::complex<T>* E, size_t N, T* x, T* y, T* z, T lambda, T A, stim::vec3<T> f, stim::vec3<T> d, T NA, T NA_in, int Nl, T r_spacing = 1){
	
	T* gpu_r;															//allocate space for the coordinates in r
	HANDLE_ERROR( cudaMalloc(&gpu_r, sizeof(T) * N) );
	T* gpu_phi;
	HANDLE_ERROR( cudaMalloc(&gpu_phi, sizeof(T) * N) );
	//stim::complex<T>* gpu_E;
	//HANDLE_ERROR( cudaMalloc(&gpu_E, sizeof(stim::complex<T>) * N) );

	stim::quaternion<T> q;												//create a quaternion
	q.CreateRotation(d, stim::vec3<T>(0, 0, 1));						//create a mapping from the propagation direction to the PSF space
	stim::matrix_sq<T, 3> rot = q.toMatrix3();
	int threads = stim::maxThreadsPerBlock();							//get the maximum number of threads per block for the CUDA device
	dim3 blocks( (unsigned)(N / threads + 1));							//calculate the optimal number of blocks
	cuda_cart2psf<T> <<< blocks, threads >>> (gpu_r, gpu_phi, N, x, y, z, f, q);	//call the CUDA kernel to move the cartesian coordinates to PSF space

	gpu_scalar_psf_local(E, N, gpu_r, gpu_phi, lambda, A, NA, NA_in, Nl, r_spacing);

	HANDLE_ERROR( cudaFree(gpu_r) );
	HANDLE_ERROR( cudaFree(gpu_phi) );

}
#endif

template<typename T>
void cpu_scalar_psf_cart(stim::complex<T>* E, size_t N, T* x, T* y, T* z, T lambda, T A, stim::vec3<T> f, stim::vec3<T> d, T NA, T NA_in, int Nl, T r_spacing = 1){

// If CUDA is available, copy the cartesian points to the GPU and evaluate them in a kernel
#ifdef CUDA_FOUND

	T* gpu_x = NULL;
	if(x != NULL){
		HANDLE_ERROR( cudaMalloc(&gpu_x, sizeof(T) * N) );
		HANDLE_ERROR( cudaMemcpy(gpu_x, x, sizeof(T) * N, cudaMemcpyHostToDevice) );
	}
	T* gpu_y = NULL;
	if(y != NULL){
		HANDLE_ERROR( cudaMalloc(&gpu_y, sizeof(T) * N) );
		HANDLE_ERROR( cudaMemcpy(gpu_y, y, sizeof(T) * N, cudaMemcpyHostToDevice) );
	}
	T* gpu_z = NULL;
	if(z != NULL){
		HANDLE_ERROR( cudaMalloc(&gpu_z, sizeof(T) * N) );
		HANDLE_ERROR( cudaMemcpy(gpu_z, z, sizeof(T) * N, cudaMemcpyHostToDevice) );
	}

	stim::complex<T>* gpu_E;
	HANDLE_ERROR( cudaMalloc(&gpu_E, sizeof(stim::complex<T>) * N) );
	HANDLE_ERROR( cudaMemcpy(gpu_E, E, sizeof(stim::complex<T>) * N, cudaMemcpyHostToDevice) );
	gpu_scalar_psf_cart<T>(gpu_E, N, gpu_x, gpu_y, gpu_z, lambda, A, f, d, NA, NA_in, Nl, r_spacing);
	HANDLE_ERROR( cudaMemcpy(E, gpu_E, sizeof(stim::complex<T>) * N, cudaMemcpyDeviceToHost) );

	HANDLE_ERROR( cudaFree(gpu_x) );
	HANDLE_ERROR( cudaFree(gpu_y) );
	HANDLE_ERROR( cudaFree(gpu_z) );
	HANDLE_ERROR( cudaFree(gpu_E) );

#else
	T* r = (T*) malloc(N * sizeof(T));					//allocate space for p in spherical coordinates
	T* phi = (T*) malloc(N * sizeof(T));				//	only r and phi are necessary (the scalar PSF is symmetric about theta)

	stim::quaternion<T> q;
	q.CreateRotation(d, stim::vec3<T>(0, 0, 1));
	stim::matrix<T, 3> R = q.toMatrix3();
	stim::vec3<T> p, ps, ds;
	for(size_t i = 0; i < N; i++){
		(x == NULL) ? p[0] = 0 : p[0] = x[i];	// test for NULL values and set positions
		(y == NULL) ? p[1] = 0 : p[1] = y[i];
		(z == NULL) ? p[2] = 0 : p[2] = z[i];

		p = p - f;

		p = R * p;					//rotate the cartesian point

		ps = p.cart2sph();						//convert from cartesian to spherical coordinates
		r[i] = ps[0];							//store r
		phi[i] = ps[2];							//phi = [0 pi]
	}

	cpu_scalar_psf_local(E, N, r, phi, lambda, A, NA, NA_in, Nl);		//call the spherical coordinate CPU function

	free(r);
	free(phi);
#endif
}
		
/// Class stim::beam represents a beam of light focused at a point and composed of several plane waves
template<typename T>
class scalarbeam
{
public:
	//enum beam_type {Uniform, Bartlett, Hamming, Hanning};

private:
	
	T NA[2];				//numerical aperature of the focusing optics	
	vec3<T> f;				//focal point
	vec3<T> d;				//propagation direction
	T A;		//beam amplitude
	T lambda;				//beam wavelength
public:

	///constructor: build a default beam (NA=1.0)
	scalarbeam(T wavelength = 1, T amplitude = 1, vec3<T> focal_point = vec3<T>(0, 0, 0), vec3<T> direction = vec3<T>(0, 0, 1), T numerical_aperture = 1, T center_obsc = 0){
		lambda = wavelength;
		A = amplitude;
		f = focal_point;
		d = direction.norm();					//make sure that the direction vector is normalized (makes calculations more efficient later on)
		NA[0] = numerical_aperture;
		NA[1] = center_obsc;
	}

	///Numerical Aperature functions
	void setNA(T na)
	{
		NA[0] = (T)0;
		NA[1] = na;
	}
	void setNA(T na0, T na1)
	{
		NA[0] = na0;
		NA[1] = na1;
	}

	//Monte-Carlo decomposition into plane waves
	std::vector< scalarwave<T> > mc(size_t N = 100000) const{

		std::vector< stim::vec3<T> > dirs = generate_focusing_vectors(N, d, NA[0], NA[1]);	//generate a random set of N vectors forming a focus
		std::vector< scalarwave<T> > samples(N);											//create a vector of plane waves
		T kmag = (T)stim::TAU / lambda;								//calculate the wavenumber
		stim::complex<T> apw;										//allocate space for the amplitude at the focal point
		T a = (T)(stim::TAU * ( (1 - cos(asin(NA[0]))) - (1 - cos(asin(NA[1])))) / (double)N);			//constant value weights plane waves based on the aperture and number of samples (N)
		stim::vec3<T> kpw;											//declare the new k-vector based on the focused plane wave direction
		for(size_t i=0; i<N; i++){										//for each sample
			kpw = dirs[i] * kmag;									//calculate the k-vector for the new plane wave
			apw = a * exp(stim::complex<T>(0, kpw.dot(-f)));				//calculate the amplitude for the new plane wave
			samples[i] = scalarwave<T>(kpw, apw);			//create a plane wave based on the direction
		}
		return samples;
	}

	void eval(stim::scalarfield<T>& E, T* X, T* Y, T* Z, int order = 500){
		cpu_scalar_psf_cart<T>(E.ptr(), E.size(), X, Y, Z, lambda, A, f, d, NA[0], NA[1], order, E.spacing());
	}

	/// Evaluate the beam to a scalar field using Debye focusing
	void eval(stim::scalarfield<T>& E, int order = 500){
		E.meshgrid();								//calculate a meshgrid if one isn't created
		if(E.gpu())
			gpu_scalar_psf_cart<T>(E.ptr(), E.size(), E.x(), E.y(), E.z(), lambda, A, f, d, NA[0], NA[1], order, E.spacing());
		else
			cpu_scalar_psf_cart<T>(E.ptr(), E.size(), E.x(), E.y(), E.z(), lambda, A, f, d, NA[0], NA[1], order, E.spacing());
		//eval(E, E.x(), E.y(), E.z(), order);
	}

	/// Calculate the field at a given point
	/// @param x is the x-coordinate of the field point
	/// @O is the approximation accuracy
	stim::complex<T> field(T x, T y, T z, size_t O){
		std::vector< scalarwave<T> > W = mc(O);
		T result = 0;											//initialize the result to zero (0)
		for(size_t i = 0; i < O; i++){							//for each plane wave
			result += W[i].pos(x, y, z);
		}
		return result;
	}

	std::string str()
	{
		std::stringstream ss;
		ss<<"Beam:"<<std::endl;
		//ss<<"	Central Plane Wave: "<<beam::E0<<" e^i ( "<<beam::k<<" . r )"<<std::endl;
		ss<<"	Beam Direction: "<<d<<std::endl;
		if(NA[0] == 0)
			ss<<"	NA: "<<NA[1];
		else
			ss<<"	NA: "<<NA[0]<<" -- "<<NA[1];

		return ss.str();
	}



};			//end beam
}			//end namespace stim

#endif