scalarfield.h
20.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#ifndef STIM_SCALARFIELD_H
#define STIM_SCALARFIELD_H
#include "../math/rect.h"
#include "../math/complex.h"
#include "../math/fft.h"
#ifdef CUDA_FOUND
#include "../cuda/crop.cuh"
#endif
namespace stim{
template<typename T>
__global__ void cuda_abs(T* img, stim::complex<T>* field, size_t N){
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
img[i] = field[i].abs();
}
template<typename T>
__global__ void cuda_real(T* img, stim::complex<T>* field, size_t N){
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
img[i] = field[i].real();
}
template<typename T>
__global__ void cuda_imag(T* img, stim::complex<T>* field, size_t N){
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
img[i] = field[i].imag();
}
template<typename T>
__global__ void cuda_intensity(T* img, stim::complex<T>* field, size_t N){
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
img[i] = pow(field[i].abs(), 2);
}
template<typename T>
__global__ void cuda_sum_intensity(T* img, stim::complex<T>* field, size_t N){
size_t i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
img[i] += pow(field[i].abs(), 2);
}
/// Perform a k-space transform of a scalar field (FFT). The given field has a width of x and the calculated momentum space has a
/// width of kx (in radians).
/// @param K is a pointer to the output array of all plane waves in the field
/// @param kx is the width of the frame in momentum space
/// @param ky is the height of the frame in momentum space
/// @param E is the field to be transformed
/// @param x is the width of the field in the spatial domain
/// @param y is the height of the field in the spatial domain
/// @param nx is the number of pixels representing the field in the x (and kx) direction
/// @param ny is the number of pixels representing the field in the y (and ky) direction
template<typename T>
void cpu_scalar_to_kspace(stim::complex<T>* K, T& kx, T& ky, stim::complex<T>* E, T x, T y, size_t nx, size_t ny){
kx = stim::TAU * nx / x; //calculate the width of the momentum space
ky = stim::TAU * ny / y;
stim::complex<T>* dev_FFT;
HANDLE_ERROR( cudaMalloc(&dev_FFT, sizeof(stim::complex<T>) * nx * ny) ); //allocate space on the CUDA device for the output array
stim::complex<T>* dev_E;
HANDLE_ERROR( cudaMalloc(&dev_E, sizeof(stim::complex<T>) * nx * ny) ); //allocate space for the field
HANDLE_ERROR( cudaMemcpy(dev_E, E, sizeof(stim::complex<T>) * nx * ny, cudaMemcpyHostToDevice) ); //copy the field to GPU memory
cufftResult result;
cufftHandle plan;
result = cufftPlan2d(&plan, nx, ny, CUFFT_C2C);
if(result != CUFFT_SUCCESS){
std::cout<<"Error creating cuFFT plan."<<std::endl;
exit(1);
}
result = cufftExecC2C(plan, (cufftComplex*)dev_E, (cufftComplex*)dev_FFT, CUFFT_FORWARD);
if(result != CUFFT_SUCCESS){
std::cout<<"Error using cuFFT to perform a forward Fourier transform of the field."<<std::endl;
exit(1);
}
cufftDestroy(plan);
stim::complex<T>* fft = (stim::complex<T>*) malloc(sizeof(stim::complex<T>) * nx * ny);
HANDLE_ERROR( cudaMemcpy(fft, dev_FFT, sizeof(stim::complex<T>) * nx * ny, cudaMemcpyDeviceToHost) );
stim::cpu_fftshift(K, fft, nx, ny);
HANDLE_ERROR( cudaFree(dev_FFT) ); //free GPU memory
HANDLE_ERROR( cudaFree(dev_E) );
free(fft); //free CPU memory
}
template<typename T>
void cpu_scalar_from_kspace(stim::complex<T>* E, T& x, T& y, stim::complex<T>* K, T kx, T ky, size_t nx, size_t ny){
x = stim::TAU * nx / kx; //calculate the width of the momentum space
y = stim::TAU * ny / ky;
stim::complex<T>* fft = (stim::complex<T>*) malloc(sizeof(stim::complex<T>) * nx * ny);
stim::cpu_ifftshift(fft, K, nx, ny);
//memcpy(fft, K, sizeof(stim::complex<T>) * nx * ny);
stim::complex<T>* dev_FFT;
HANDLE_ERROR( cudaMalloc(&dev_FFT, sizeof(stim::complex<T>) * nx * ny) ); //allocate space on the CUDA device for the output array
HANDLE_ERROR( cudaMemcpy(dev_FFT, fft, sizeof(stim::complex<T>) * nx * ny, cudaMemcpyHostToDevice) ); //copy the field to GPU memory
stim::complex<T>* dev_E;
HANDLE_ERROR( cudaMalloc(&dev_E, sizeof(stim::complex<T>) * nx * ny) ); //allocate space for the field
cufftResult result;
cufftHandle plan;
result = cufftPlan2d(&plan, nx, ny, CUFFT_C2C);
if(result != CUFFT_SUCCESS){
std::cout<<"Error creating cuFFT plan."<<std::endl;
exit(1);
}
result = cufftExecC2C(plan, (cufftComplex*)dev_FFT, (cufftComplex*)dev_E, CUFFT_INVERSE);
if(result != CUFFT_SUCCESS){
std::cout<<"Error using cuFFT to perform a forward Fourier transform of the field."<<std::endl;
exit(1);
}
cufftDestroy(plan);
HANDLE_ERROR( cudaMemcpy(E, dev_E, sizeof(stim::complex<T>) * nx * ny, cudaMemcpyDeviceToHost) );
HANDLE_ERROR( cudaFree(dev_FFT) ); //free GPU memory
HANDLE_ERROR( cudaFree(dev_E) );
free(fft); //free CPU memory
}
/// Propagate a field slice along its orthogonal direction by a given distance z
/// @param Enew is the resulting propogated field
/// @param E is the field to be propogated
/// @param sx is the size of the field in the lateral x direction
/// @param sy is the size of the field in the lateral y direction
/// @param z is the distance to be propagated
/// @param k is the wavenumber 2*pi/lambda
/// @param nx is the number of samples in the field along the lateral x direction
/// @param ny is the number of samples in the field along the lateral y direction
template<typename T>
void cpu_scalar_propagate(stim::complex<T>* Enew, stim::complex<T>* E, T sx, T sy, T z, T k, size_t nx, size_t ny){
stim::complex<T>* K = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * nx * ny );
T Kx, Ky; //width and height in k space
cpu_scalar_to_kspace(K, Kx, Ky, E ,sx, sy, nx, ny);
//T* mag = (T*) malloc( sizeof(T) * nx * ny );
//stim::abs(mag, K, nx * ny);
//stim::cpu2image<float>(mag, "kspace_pre_shift.bmp", nx, ny, stim::cmBrewer);
size_t kxi, kyi;
size_t i;
T kx, kx_sq, ky, ky_sq, k_sq;
T kz;
stim::complex<T> shift;
T min_kx = -Kx / 2;
T dkx = Kx / (nx);
T min_ky = -Ky / 2;
T dky = Ky / (ny);
for(kyi = 0; kyi < ny; kyi++){ //for each plane wave in the ky direction
for(kxi = 0; kxi < nx; kxi++){ //for each plane wave in the ky direction
i = kyi * nx + kxi;
kx = min_kx + kxi * dkx; //calculate the position of the current plane wave
ky = min_ky + kyi * dky;
kx_sq = kx * kx;
ky_sq = ky * ky;
k_sq = k*k;
if(kx_sq + ky_sq < k_sq){
kz = sqrt(k_sq - kx_sq - ky_sq); //estimate kz using the Fresnel approximation
shift = -exp(stim::complex<T>(0, kz * z));
K[i] *= shift;
K[i] /= (nx*ny); //normalize the DFT
}
else{
K[i] = 0;
}
}
}
//stim::abs(mag, K, nx * ny);
//stim::cpu2image<float>(mag, "kspace_post_shift.bmp", nx, ny, stim::cmBrewer);
cpu_scalar_from_kspace(Enew, sx, sy, K, Kx, Ky, nx, ny);
free(K);
}
template<typename T>
void gpu_scalar_propagate(stim::complex<T>* Enew, stim::complex<T>* E, T sx, T sy, T z, T k, size_t nx, size_t ny){
size_t field_bytes = sizeof(stim::complex<T>) * nx * ny;
stim::complex<T>* host_E = (stim::complex<T>*) malloc( field_bytes);
HANDLE_ERROR( cudaMemcpy(host_E, E, field_bytes, cudaMemcpyDeviceToHost) );
stim::complex<T>* host_Enew = (stim::complex<T>*) malloc(field_bytes);
cpu_scalar_propagate(host_Enew, host_E, sx, sy, z, k, nx, ny);
HANDLE_ERROR( cudaMemcpy(Enew, host_Enew, field_bytes, cudaMemcpyHostToDevice) );
free(host_E);
free(host_Enew);
}
/// Apply a lowpass filter to a field slice
/// @param Enew is the resulting propogated field
/// @param E is the field to be propogated
/// @param sx is the size of the field in the lateral x direction
/// @param sy is the size of the field in the lateral y direction
/// @param highest is the highest spatial frequency that can pass through the filter
/// @param nx is the number of samples in the field along the lateral x direction
/// @param ny is the number of samples in the field along the lateral y direction
template<typename T>
void cpu_scalar_lowpass(stim::complex<T>* Enew, stim::complex<T>* E, T sx, T sy, T highest, size_t nx, size_t ny){
stim::complex<T>* K = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * nx * ny );
T Kx, Ky; //width and height in k space
cpu_scalar_to_kspace(K, Kx, Ky, E ,sx, sy, nx, ny);
//T* mag = (T*) malloc( sizeof(T) * nx * ny );
//stim::abs(mag, K, nx * ny);
//stim::cpu2image<float>(mag, "kspace_pre_lowpass.bmp", nx, ny, stim::cmBrewer);
size_t kxi, kyi;
size_t i;
T kx, kx_sq, ky, ky_sq, k_sq;
T kz;
stim::complex<T> shift;
T min_kx = -Kx / 2;
T dkx = Kx / (nx);
T min_ky = -Ky / 2;
T dky = Ky / (ny);
T highest_sq = highest * highest;
for(kyi = 0; kyi < ny; kyi++){ //for each plane wave in the ky direction
for(kxi = 0; kxi < nx; kxi++){ //for each plane wave in the ky direction
i = kyi * nx + kxi;
kx = min_kx + kxi * dkx; //calculate the position of the current plane wave
ky = min_ky + kyi * dky;
kx_sq = kx * kx;
ky_sq = ky * ky;
if(kx_sq + ky_sq > highest_sq){
K[i] = 0;
}
else
K[i] /= nx * ny; //normalize the DFT
}
}
//stim::abs(mag, K, nx * ny);
//stim::cpu2image<float>(mag, "kspace_post_lowpass.bmp", nx, ny, stim::cmBrewer);
cpu_scalar_from_kspace(Enew, sx, sy, K, Kx, Ky, nx, ny);
free(K);
}
enum locationType {CPUmem, GPUmem};
/// Class represents a scalar optical field.
/// In general, this class is designed to operate between the CPU and GPU. So, make sure all functions have an option to create the output on either.
/// The field is stored *either* on the GPU or host memory, but not both. This enforces that there can't be different copies of the same field.
/// This class is designed to be included in all of the other scalar optics classes, allowing them to render output data so make sure to keep it general and compatible.
template<typename T>
class scalarfield : public rect<T>{
protected:
stim::complex<T>* E;
size_t R[2];
locationType loc;
using rect<T>::X;
using rect<T>::Y;
T* p[3]; //scalar position for each point in E
/// Convert the field to a k-space representation (do an FFT)
void to_kspace(T& kx, T& ky){
cpu_scalar_to_kspace(E, kx, ky, E, X.len(), Y.len(), R[0], R[1]);
}
void from_kspace(){
kx = stim::TAU * R[0] / X.len(); //calculate the width of the momentum space
ky = stim::TAU * R[1] / Y.len();
T x, y;
cpu_scalar_from_kspace(E, x, y, E, kx, ky, R[0], R[1]);
}
public:
/// Returns the number of values in the field
CUDA_CALLABLE size_t size(){
return R[0] * R[1];
}
CUDA_CALLABLE size_t grid_bytes(){
return sizeof(stim::complex<T>) * R[0] * R[1];
}
scalarfield(size_t X, size_t Y, T size = 1, T z_pos = 0) : rect<T>::rect(size, z_pos){
R[0] = X; //set the field resolution
R[1] = Y;
E = (stim::complex<T>*) malloc(grid_bytes()); //allocate in CPU memory
memset(E, 0, grid_bytes());
loc = CPUmem;
p[0] = p[1] = p[2] = NULL; //set the position vector to NULL
}
~scalarfield(){
if(loc == CPUmem) free(E);
else cudaFree(E);
}
/// Calculates the distance between points on the grid
T spacing(){
T du = rect<T>::X.len() / R[0];
T dv = rect<T>::Y.len() / R[1];
return min<T>(du, dv);
}
/// Copy the field array to the GPU, if it isn't already there
void to_gpu(){
if(loc == GPUmem) return;
else{
stim::complex<T>* dev_E;
HANDLE_ERROR( cudaMalloc(&dev_E, grid_bytes()) ); //allocate GPU memory
HANDLE_ERROR( cudaMemcpy(dev_E, E, grid_bytes(), cudaMemcpyHostToDevice) ); //copy the field to the GPU
free(E); //free the CPU memory
E = dev_E; //swap pointers
if(p[0]){
size_t meshgrid_bytes = size() * sizeof(T); //calculate the number of bytes in each meshgrid
T* dev_X; //allocate variables to store the device meshgrid
T* dev_Y;
T* dev_Z;
HANDLE_ERROR( cudaMalloc(&dev_X, meshgrid_bytes) ); //allocate space for the meshgrid on the device
HANDLE_ERROR( cudaMalloc(&dev_Y, meshgrid_bytes) );
HANDLE_ERROR( cudaMalloc(&dev_Z, meshgrid_bytes) );
HANDLE_ERROR( cudaMemcpy(dev_X, p[0], meshgrid_bytes, cudaMemcpyHostToDevice) ); //copy from the host to the device
HANDLE_ERROR( cudaMemcpy(dev_Y, p[1], meshgrid_bytes, cudaMemcpyHostToDevice) );
HANDLE_ERROR( cudaMemcpy(dev_Z, p[2], meshgrid_bytes, cudaMemcpyHostToDevice) );
free(p[0]); //free device memory
free(p[1]);
free(p[2]);
p[0] = dev_X; //swap in the new pointers to device memory
p[1] = dev_Y;
p[2] = dev_Z;
}
loc = GPUmem; //set the location flag
}
}
/// Copy the field array to the CPU, if it isn't already there
void to_cpu(){
if(loc == CPUmem) return;
else{
stim::complex<T>* host_E = (stim::complex<T>*) malloc(grid_bytes()); //allocate space in main memory
HANDLE_ERROR( cudaMemcpy(host_E, E, grid_bytes(), cudaMemcpyDeviceToHost) ); //copy from GPU to CPU
HANDLE_ERROR( cudaFree(E) ); //free device memory
E = host_E; //swap pointers
//copy a meshgrid has been created
if(p[0]){
size_t meshgrid_bytes = size() * sizeof(T); //move X to the CPU
T* host_X = (T*) malloc( meshgrid_bytes );
T* host_Y = (T*) malloc( meshgrid_bytes );
T* host_Z = (T*) malloc( meshgrid_bytes );
HANDLE_ERROR( cudaMemcpy(host_X, p[0], meshgrid_bytes, cudaMemcpyDeviceToHost) );
HANDLE_ERROR( cudaMemcpy(host_Y, p[1], meshgrid_bytes, cudaMemcpyDeviceToHost) );
HANDLE_ERROR( cudaMemcpy(host_Z, p[2], meshgrid_bytes, cudaMemcpyDeviceToHost) );
HANDLE_ERROR( cudaFree(p[0]) );
HANDLE_ERROR( cudaFree(p[1]) );
HANDLE_ERROR( cudaFree(p[2]) );
p[0] = host_X;
p[1] = host_Y;
p[2] = host_Z;
}
loc = CPUmem;
}
}
bool gpu(){
if(loc == GPUmem) return true;
else return false;
}
/// Propagate the field along its orthogonal direction by a distance d
void propagate(T d, T k){
if(loc == CPUmem){
cpu_scalar_propagate(E, E, X.len(), Y.len(), d, k, R[0], R[1]);
}
else{
gpu_scalar_propagate(E, E, X.len(), Y.len(), d, k, R[0], R[1]);
}
}
/// Apply a low pass filter preserving all frequencies lower than or equal to "highest"
// @param highest is the highest frequency passed
void lowpass(T highest){
cpu_scalar_lowpass(E, E, X.len(), Y.len(), highest, R[0], R[1]);
}
/// Crop an image based on a given padding parameter (crop out the center)
void crop(size_t padding, stim::scalarfield<T>& cropped){
size_t Cx = R[0] / (2 * padding + 1); //calculate the size of the cropped image based on the padding value
size_t Cy = R[1] / (2 * padding + 1);
if(cropped.R[0] != Cx || cropped.R[1] != Cy){
std::cout<<"Error: cropped field resolution ("<<cropped.R[0]<<" x "<<cropped.R[1]<<") does not match the required resolution ("<<Cx<<" x "<<Cy<<")."<<std::endl;
exit(1);
}
if(loc == CPUmem){
cropped.to_cpu(); //make sure that the cropped image is on the CPU
size_t x, y;
size_t sx, sy, si, di;
for(y = 0; y < Cy; y++){
sy = y + Cy * padding; //calculate the y-index into the source image
for(x = 0; x < Cx; x++){
sx = x + Cx * padding; //calculate the x-index into the source image
si = sy * R[0] + sx; //calculate the 1D index into the source image
di = y * Cx + x;
cropped.E[di] = E[si];
}
}
}
else{
cropped.to_gpu(); //make sure that the cropped image is also on the GPU
gpu_crop2d<stim::complex<T>>(cropped.E, E, R[0], R[1], Cx * padding, Cy * padding, Cx, Cy);
}
}
std::string str(){
std::stringstream ss;
ss<<rect<T>::str()<<std::endl;
ss<<"[ "<<R[0]<<" x "<<R[1]<<" ]"<<std::endl;
ss<<"location: ";
if(loc == CPUmem) ss<<"CPU";
else ss<<"GPU";
ss<<endl;
return ss.str();
}
stim::complex<T>* ptr(){
return E;
}
T* x(){ return p[0]; }
T* y(){ return p[1]; }
T* z(){ return p[2]; }
/// Evaluate the cartesian coordinates of each point in the field. The resulting arrays are allocated in the same memory where the field is stored.
void meshgrid(T* X, T* Y, T* Z, locationType location){
//size_t array_size = sizeof(T) * R[0] * R[1];
if(location == CPUmem){
T du = (T)1.0 / (R[0] - 1); //calculate the spacing between points in the grid
T dv = (T)1.0 / (R[1] - 1);
size_t ui, vi, i;
stim::vec3<T> p;
for(vi = 0; vi < R[1]; vi++){
i = vi * R[0];
for(ui = 0; ui < R[0]; ui++){
p = rect<T>::p(ui * du, vi * dv);
X[i] = p[0];
Y[i] = p[1];
Z[i] = p[2];
i++;
}
}
//stim::cpu2image(X, "X.bmp", R[0], R[1], stim::cmBrewer);
//stim::cpu2image(Y, "Y.bmp", R[0], R[1], stim::cmBrewer);
//stim::cpu2image(Z, "Z.bmp", R[0], R[1], stim::cmBrewer);
}
else{
std::cout<<"GPU allocation of a meshgrid isn't supported yet. You'll have to write kernels to do the calculation.";
exit(1);
}
}
/// Create a local meshgrid
void meshgrid(){
if(p[0]) return; //if the p[0] value is not NULL, a meshgrid has already been created
if(loc == CPUmem){
p[0] = (T*) malloc( size() * sizeof(T) );
p[1] = (T*) malloc( size() * sizeof(T) );
p[2] = (T*) malloc( size() * sizeof(T) );
}
else{
std::cout<<"GPUmem meshgrid isn't implemented yet."<<std::endl;
exit(1);
}
meshgrid(p[0], p[1], p[2], loc);
}
//clear the field, setting all values to zero
void clear(){
if(loc == GPUmem)
HANDLE_ERROR(cudaMemset(E, 0, grid_bytes()));
else
memset(E, 0, grid_bytes());
}
void image(std::string filename, stim::complexComponentType type = complexMag, stim::colormapType cmap = stim::cmBrewer){
if(loc == GPUmem){
T* image;
HANDLE_ERROR( cudaMalloc(&image, sizeof(T) * size()) );
int threads = stim::maxThreadsPerBlock(); //get the maximum number of threads per block for the CUDA device
dim3 blocks( R[0] * R[1] / threads + 1 ); //create a 1D array of blocks
switch(type){
case complexMag:
cuda_abs<T><<< blocks, threads >>>(image, E, size());
break;
case complexReal:
cuda_real<T><<< blocks, threads >>>(image, E, size());
break;
case complexImaginary:
cuda_imag<T><<< blocks, threads >>>(image, E, size());
break;
case complexIntensity:
cuda_intensity<T><<< blocks, threads >>>(image, E, size());
break;
}
stim::gpu2image<T>(image, filename, R[0], R[1], stim::cmBrewer);
HANDLE_ERROR( cudaFree(image) );
}
else{
T* image = (T*) malloc( sizeof(T) * size() ); //allocate space for the real image
switch(type){ //get the specified component from the complex value
case complexMag:
stim::abs(image, E, size());
break;
case complexReal:
stim::real(image, E, size());
break;
case complexImaginary:
stim::imag(image, E, size());
break;
case complexIntensity:
stim::intensity(image, E, size());
break;
}
stim::cpu2image(image, filename, R[0], R[1], cmap); //save the resulting image
free(image); //free the real image
}
}
void image(T* img, stim::complexComponentType type = complexMag){
if(loc == GPUmem) to_cpu(); //if the field is in the GPU, move it to the CPU
switch(type){ //get the specified component from the complex value
case complexMag:
stim::abs(img, E, size());
break;
case complexReal:
stim::real(img, E, size());
break;
case complexImaginary:
stim::imag(img, E, size());
break;
case complexIntensity:
stim::intensity(img, E, size());
break;
}
//stim::cpu2image(image, filename, R[0], R[1], cmap); //save the resulting image
//free(image); //free the real image
}
//adds the field intensity to the output array (useful for calculating detector response to incoherent fields)
void intensity(T* out){
if(loc == GPUmem){
//T* image;
//HANDLE_ERROR( cudaMalloc(&image, sizeof(T) * size()) );
int threads = stim::maxThreadsPerBlock(); //get the maximum number of threads per block for the CUDA device
dim3 blocks( R[0] * R[1] / threads + 1 ); //create a 1D array of blocks
cuda_sum_intensity<T><<< blocks, threads >>>(out, E, size());
}
else{
T* image = (T*) malloc( sizeof(T) * size() ); //allocate space for the real image
stim::intensity(image, E, size()); //calculate the intensity
size_t N = size(); //calculate the number of elements in the field
for(size_t n = 0; n < N; n++) //for each point in the field
out[n] += image[n]; //add the field intensity to the output image
free(image); //free the temporary intensity image
}
}
}; //end class scalarfield
}
//stream insertion operator
template<typename T>
std::ostream& operator<<(std::ostream& os, stim::scalarfield<T>& rhs){
os<<rhs.str();
return os;
}
#endif