array_multiply.cuh
1.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#ifndef STIM_CUDA_ARRAY_MULTIPLY_H
#define STIM_CUDA_ARRAY_MULTIPLY_H
#include <iostream>
#include <cuda.h>
#include <stim/cuda/cudatools.h>
namespace stim{
namespace cuda{
template<typename T>
__global__ void cuda_multiply(T* lhs, T rhs, unsigned int N){
//calculate the 1D index for this thread
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i < N)
lhs[i] *= rhs;
}
template<typename T>
void gpu_multiply(T* lhs, T rhs, unsigned int N){
//get the maximum number of threads per block for the CUDA device
int threads = stim::maxThreadsPerBlock();
//calculate the number of blocks
int blocks = N / threads + (N%threads == 0 ? 0:1);
//call the kernel to do the multiplication
cuda_multiply <<< blocks, threads >>>(lhs, rhs, N);
}
template<typename T>
void cpu_multiply(T* lhs, T rhs, unsigned int N){
//calculate the number of bytes in the array
unsigned int bytes = N * sizeof(T);
//allocate memory on the GPU for the array
T* gpuLHS;
HANDLE_ERROR( cudaMalloc(&gpuLHS, bytes) );
//copy the array to the GPU
HANDLE_ERROR( cudaMemcpy(gpuLHS, lhs, bytes, cudaMemcpyHostToDevice) );
//call the GPU version of this function
gpu_multiply<T>(gpuLHS, rhs, N);
//copy the array back to the CPU
HANDLE_ERROR( cudaMemcpy(lhs, gpuLHS, bytes, cudaMemcpyDeviceToHost) );
//free allocated memory
cudaFree(gpuLHS);
}
}
}
#endif