envi.py 20 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 21 20:18:01 2017

@author: david
"""

import os
import numpy
import scipy
import matplotlib.pyplot as plt
import sys
from math import floor
import progressbar

class envi_header:
    def __init__(self, filename = ""):
        if filename != "":
            self.initialize()
            self.load(filename)
        else:
            self.initialize()
        
    #initialization function
    def initialize(self):
        self.samples = int(0)
        self.lines = int(0)
        self.bands = int(0)
        self.header_offset = int(0)
        self.data_type = int(4)
        self.interleave = "bsq"
        self.sensor_type = "Unknown"
        self.byte_order = int(0)
        self.x_start = int(0)
        self.y_start = int(0)
        self.z_plot_titles = "Unknown, Unknown"
        self.pixel_size = [float(0), float(0)]
        self.pixel_size_units = "Meters"
        self.wavelength_units = "Wavenumber"
        self.description = "no description"
        self.band_names = []
        self.wavelength = []
        
    #convert an ENVI data_type value to a numpy data type        
    def get_numpy_type(self, val):
        if val == 1:
            return numpy.byte
        elif val == 2:
            return numpy.int16
        elif val == 3:
            return numpy.int32
        elif val == 4:
            return numpy.float32
        elif val == 5:
            return numpy.float64
        elif val == 6:
            return numpy.complex64
        elif val == 9:
            return numpy.complex128
        elif val == 12:
            return numpy.uint16
        elif val == 13:
            return numpy.uint32
        elif val == 14:
            return numpy.int64
        elif val == 15:
            return numpy.uint64
    
    def get_envi_type(self, val):
        if val == numpy.byte:
            return 1
        elif val == numpy.int16:
            return 2
        elif val == numpy.int32:
            return 3
        elif val == numpy.float32:
            return 4
        elif val == numpy.float64:
            return 5
        elif val == numpy.complex64:
            return 6
        elif val == numpy.complex128:
            return 9
        elif val == numpy.uint16:
            return 12
        elif val == numpy.uint32:
            return 13
        elif val == numpy.int64:
            return 14
        elif val == numpy.uint64:
            return 15
            
    def load(self, fname):
        f = open(fname)
        l = f.readlines()
        if l[0].strip() != "ENVI":
            print("ERROR: not an ENVI file")
            return
        li = 1
        while li < len(l):
            #t = l[li].split()               #split the line into tokens
            #t = map(str.strip, t)               #strip all of the tokens in the token list
            
            #handle the simple conditions
            #if l[li].startswith("file type"):
            #    if not l[li].strip().endswith("ENVI Standard"):
            #        print("ERROR: unsupported ENVI file format: " + l[li].strip())
            #        return
            if l[li].startswith("samples"):
                self.samples = int(l[li].split()[-1])
            elif l[li].startswith("lines"):
                self.lines = int(l[li].split()[-1])
            elif l[li].startswith("bands"):
                self.bands = int(l[li].split()[-1])
            elif l[li].startswith("header offset"):
                self.header_offset = int(l[li].split()[-1])
            elif l[li].startswith("data type"):
                self.data_type = self.get_numpy_type(int(l[li].split()[-1]))
            elif l[li].startswith("interleave"):
                self.interleave = l[li].split()[-1].strip()
            elif l[li].startswith("sensor type"):
                self.sensor_type = l[li].split()[-1].strip()
            elif l[li].startswith("byte order"):
                self.byte_order = int(l[li].split()[-1])
            elif l[li].startswith("x start"):
                self.x_start = int(l[li].split()[-1])
            elif l[li].startswith("y start"):
                self.y_start = int(l[li].split()[-1])
            elif l[li].startswith("z plot titles"):
                i0 = l[li].rindex('{')
                i1 = l[li].rindex('}')
                self.z_plot_titles = l[li][i0 + 1 : i1]
            elif l[li].startswith("pixel size"):
                i0 = l[li].rindex('{')
                i1 = l[li].rindex('}')
                s = l[li][i0 + 1 : i1].split(',')
                self.pixel_size = [float(s[0]), float(s[1])]
                self.pixel_size_units = s[2][s[2].rindex('=') + 1:].strip()
            elif l[li].startswith("wavelength units"):
                self.wavelength_units = l[li].split()[-1].strip()                
            
            #handle the complicated conditions
            elif l[li].startswith("description"):
                desc = [l[li]]
                ''' 
                while l[li].strip()[-1] != '}': #will fail if l[li].strip() is empty
                    li += 1
                    desc.append(l[li])
                '''
                while True:
                    if l[li].strip():
                       if  l[li].strip()[-1] == '}':
                           break
                    li += 1
                    desc.append(l[li])

                desc = ''.join(list(map(str.strip, desc)))           #strip all white space from the string list
                i0 = desc.rindex('{')
                i1 = desc.rindex('}')
                self.description = desc[i0 + 1 : i1]
                
            elif l[li].startswith("band names"):
                names = [l[li]]
                while l[li].strip()[-1] != '}':
                    li += 1
                    names.append(l[li])
                names = ''.join(list(map(str.strip, names)))           #strip all white space from the string list
                i0 = names.rindex('{')
                i1 = names.rindex('}')
                names = names[i0 + 1 : i1]
                self.band_names = list(map(str.strip, names.split(',')))
            elif l[li].startswith("wavelength"):
                waves = [l[li]]
                while l[li].strip()[-1] != '}':
                    li += 1
                    waves.append(l[li])
                waves = ''.join(list(map(str.strip, waves)))           #strip all white space from the string list
                i0 = waves.rindex('{')
                i1 = waves.rindex('}')
                waves = waves[i0 + 1 : i1]
                self.wavelength = list(map(float, waves.split(',')))

            li += 1          
        
        f.close()

    #save an ENVI header
    def save(self, fname):
        f = open(fname, "w")
        f.write("ENVI\n")
        f.write("description = {" + self.description + "}" + "\n")
        f.write("samples = " + str(self.samples) + "\n")
        f.write("lines = " + str(self.lines) + "\n")
        f.write("bands = " + str(self.bands) + "\n")
        f.write("header offset = " + str(self.header_offset) + "\n")
        f.write("file type = ENVI Standard" + "\n")
        f.write("data type = " + str(self.get_envi_type(self.data_type)) + "\n")
        f.write("interleave = " + self.interleave + "\n")
        f.write("sensor type = " + self.sensor_type + "\n")
        f.write("byte order = " + str(self.byte_order) + "\n")
        f.write("x start = " + str(self.x_start) + "\n")
        f.write("y start = " + str(self.y_start) + "\n")
        f.write("wavelength units = " + self.wavelength_units + "\n")
        f.write("z plot titles = {" + self.z_plot_titles + "}" + "\n")
        
        # save the wavelength values
        if self.wavelength != []:
            if len(self.wavelength) == self.bands:
                f.write("wavelength = {")
                f.write(",".join(map(str, self.wavelength)))
                f.write("}\n")
            else:
                raise Exception("ENVI HEADER ERROR: Number of wavelengths does not match number of bands")

        f.close()

    #sets the properties of the header to match those of the input array
    def setprops(self, A, interleave="BSQ", wavelength=[]):
        # determine the data type automatically
        self.type = A.dtype
        
        # determine the ordering based on the specified interleave
        if interleave == "BSQ":
            self.samples = A.shape[2]
            self.lines = A.shape[1]
            self.bands = A.shape[0]
        elif interleave == "BIP":
            self.samples = A.shape[1]
            self.lines = A.shape[2]
            self.bands = A.shape[0]
        elif interleave == "BIL":
            self.samples = A.shape[0]
            self.lines = A.shape[2]
            self.bands = A.shape[1]
        else:
            raise Exception("invalid interleave format (requires 'BSQ', 'BIP', or 'BIL') - interleave is set to {}".interleave)
            
        # if wavelength units are given, make sure that they match the number of bands
        if wavelength != []:
            if len(wavelength) != self.bands:
                raise Exception("invalid number of wavelengths specified")
            else:
                self.wavelength = wavelength
                

        
class envi:
    def __init__(self, filename, headername = "", mask = []):
        self.open(filename, headername)
        if mask == []:
            self.mask = numpy.ones((self.header.lines, self.header.samples), dtype=numpy.bool)
        elif type(mask) == numpy.ndarray:
            self.mask = mask
        else:
            print("ERROR: unrecognized mask format - expecting a boolean array")
        self.idx = 0                                                               #initialize the batch IDX to 0 for batch reading
        
    def open(self, filename, headername = ""):
        if headername == "":
            headername = filename + ".hdr"
            
        if not os.path.isfile(filename):
            print("ERROR: " + filename + " not found")
            return
        if not os.path.isfile(headername):
            print("ERROR: " + headername + " not found")
            return
        
        #open the file
        self.header = envi_header(headername)
        self.file = open(filename, "rb")
    
    # load the entire ENVI file into memory and return it as an array
    def loadall(self):
        X = self.header.samples
        Y = self.header.lines
        B = self.header.bands
        
        #load the data
        D = numpy.fromfile(self.file, dtype=self.header.data_type)
        
        if self.header.interleave == "bsq":
            return numpy.reshape(D, (B, Y, X))
            #return numpy.swapaxes(D, 0, 2)
        elif self.header.interleave == "bip":
            D = numpy.reshape(D, (Y, X, B))
            return numpy.rollaxis(D, 2)
        elif self.header.interleave == "bil":
            D = numpy.reshape(D, (Y, B, X))
            return numpy.rollaxis(D, 1)
    
    #save an updated version of the file (all header information is assumed to be the same)
    def saveall(self, D, filename):
        
        new_header = self.header
        new_header.interleave = "bsq"
        new_header.save(filename + ".hdr")
        D.tofile(filename)
        
        
    #loads all of the pixels where mask != 0 and returns them as a matrix
    def loadmask(self, mask):
        X = self.header.samples
        Y = self.header.lines
        B = self.header.bands
        
        P = numpy.count_nonzero(mask)           #count the number of zeros in the mask file
        M = numpy.zeros((B, P), dtype=self.header.data_type)
        type_bytes = numpy.dtype(self.header.data_type).itemsize
        
        prev_pos = self.file.tell()
        self.file.seek(0)
        if self.header.interleave == "bip":
            spectrum = numpy.zeros(B, dtype=self.header.data_type)
            flatmask = numpy.reshape(mask, (X * Y))
            i = numpy.flatnonzero(flatmask)
            bar = progressbar.ProgressBar(max_value = P)
            #bar = pyprind.ProgBar(P)
            for p in range(0, P):
                self.file.seek(i[p] * B * type_bytes)
                self.file.readinto(spectrum)
                M[:, p] = spectrum
                bar.update(p+1)
                #bar.update()
        elif self.header.interleave == "bsq":
            band = numpy.zeros(mask.shape, dtype=self.header.data_type)
            i = numpy.nonzero(mask)
            bar = progressbar.ProgressBar(max_value=B)
            #bar = pyprind.ProgBar(P)
            for b in range(0, B):
                self.file.seek(b * X * Y * type_bytes)
                self.file.readinto(band)
                M[b, :] = band[i]
                bar.update(b+1)
                #bar.update()
        elif self.header.interleave == "bil":
            plane = numpy.zeros((B, X), dtype=self.header.data_type)
            p = 0
            bar = progressbar.ProgressBar(max_value=Y)
            #bar = pyprind.ProgBar(P)
            for l in range(0, Y):
                i = numpy.flatnonzero(mask[l, :])
                self.file.readinto(plane)
                M[:, p:p+i.shape[0]] = plane[:, i]
                p = p + i.shape[0]
                bar.update(l+1)
                #bar.update()
        self.file.seek(prev_pos)
        return M

    def loadband(self, n):
        X = self.header.samples
        Y = self.header.lines
        B = self.header.bands

        band = numpy.zeros((Y, X), dtype=self.header.data_type)
        type_bytes = numpy.dtype(self.header.data_type).itemsize
        
        prev_pos = self.file.tell()
        if self.header.interleave == "bsq":
            self.file.seek(n * X * Y * type_bytes)
            self.file.readinto(band)
        self.file.seek(prev_pos)
        return band

    #create a set of feature/target pairs for classification
    #input: envi file object, stack of class masks C x Y x X
    #output: feature matrix (features x pixels), target matrix (1 x pixels)
    #example: generate_training(("class_coll.bmp", "class_epith.bmp"), (1, 2))
    #   verify      verify that there are no NaN or Inf values
    def loadtrain(self, classimages, verify=True):

        # get number of classes
        C = classimages.shape[0]

        F = []
        T = []
        for c in range(0, C):
            print("\nLoading class " + str(c+1) + "...")
            f = self.loadmask(classimages[c, :, :])            #load the feature matrix for class c
            t = numpy.ones((f.shape[1])) * (c+1)         #generate a target array                 
            F.append(f)
            T.append(t)
        
        return numpy.nan_to_num(numpy.concatenate(F, 1).transpose()), numpy.concatenate(T)


    #create a set of feature/target pairs for classification with balanced data
    #input: envi file object, stack of class masks C x Y x X, number of samples per class
    #output: feature matrix (features x pixels), target matrix (1 x pixels)
    #example: generate_training(("class_coll.bmp", "class_epith.bmp"), (1, 2))
    #   verify      verify that there are no NaN or Inf values
    def loadtrain_balance(self, classimages, num_samples=None):

        # get number of classes
        C = classimages.shape[0]

        F = []
        T = []

        # get number of samples per class
        samples_per_class = numpy.zeros(C, dtype=numpy.int32)
        for c in range(0, C):
            if num_samples is None:
                samples_per_class[c] = numpy.count_nonzero(classimages[c, :, :])
            else:
                # if user has specified a max number of samples per class
                if num_samples > numpy.count_nonzero(classimages[c, :, :]):
                    samples_per_class[c] = numpy.count_nonzero(classimages[c, :, :])
                else:
                    samples_per_class[c] = num_samples

        for c in range(0, C):
            print("\nLoading class " + str(c+1) + "...")
            # row, col index of valid pixels
            temp = classimages[c,:]
            flat_temp = numpy.reshape(temp, temp.shape[0]*temp.shape[1])

            idx = numpy.flatnonzero(temp)  # indices of nonzero values
            if num_samples:
                # use specific number of samples for training
                numpy.random.shuffle(idx)
                idx = idx[0:samples_per_class[c]]

            # increase number of samples by copying them over multiple times
            max_samples = numpy.amax(samples_per_class)
            # num of times to copy for even division
            copy_times = int(floor(max_samples / samples_per_class[c]))
            rem = max_samples % samples_per_class[c]  # remaining samples

            for i in range(0, copy_times):
                numpy.random.shuffle(idx)
                shuffle_temp = numpy.zeros(flat_temp.shape, dtype=bool)
                shuffle_temp[idx] = flat_temp[idx]
                f = self.loadmask(numpy.reshape(shuffle_temp, (temp.shape[0], temp.shape[1])))  # load the feature matrix for class c
                t = numpy.ones((f.shape[1])) * (c+1)  # generate a target array
                F.append(f)
                T.append(t)

            # copy the remaning samples so the total matches the max number of samples chosen by user
            if rem > 0:
                numpy.random.shuffle(idx)
                idx = idx[0:rem]
                shuffle_temp = numpy.zeros(flat_temp.shape, dtype=bool)
                shuffle_temp[idx] = flat_temp[idx]
                f = self.loadmask(numpy.reshape(shuffle_temp, (temp.shape[0], temp.shape[1])))  # load the feature matrix for class c
                t = numpy.ones((f.shape[1])) * (c+1)  # generate a target array
                F.append(f)
                T.append(t)

        return numpy.nan_to_num(numpy.concatenate(F, 1).transpose()), numpy.concatenate(T)

    
    #read a batch of data based on the mask
    def loadbatch(self, npixels):
        i = numpy.flatnonzero(self.mask)                                      #get the indices of valid pixels
        if len(i) == self.idx:                                                    #if all of the pixels have been read, return an empyt array
            return []
        npixels = min(npixels, len(i) - self.idx)                        #if there aren't enough pixels, change the batch size
        B = self.header.bands
        
        batch = numpy.zeros((B, npixels), dtype=self.header.data_type)          #allocate space for the batch
        pixel = numpy.zeros((B), dtype=self.header.data_type)                   #allocate space for a single pixel
        type_bytes = numpy.dtype(self.header.data_type).itemsize                #calculate the size of a single value
        if self.header.interleave == "bip":
            for n in range(0, npixels):                                          #for each pixel in the batch
                self.file.seek(i[self.idx] * B * type_bytes)                 #seek to the current pixel in the file
                self.file.readinto(pixel)                                       #read a single pixel
                batch[:, n] = pixel                                             #save the pixel into the batch matrix
                self.idx = self.idx + 1
            return batch
        elif self.header.interleave == "bsq":
            print("ERROR: BSQ batch loading isn't implemented yet!")
        elif self.header.interleave == "bil":
            print("ERROR: BIL batch loading isn't implemented yet!")        
       
    #returns the current batch index         
    def getidx(self):
        return self.idx

    #returns an image of the pixels that have been read using batch loading
    def batchmask(self):
        #allocate a new mask
        outmask = numpy.zeros(self.mask.shape, dtype=numpy.bool)

        #zero out any unclassified pixels 
        idx = self.getidx()
        i = numpy.nonzero(self.mask)
        outmask[i[0][0:idx], i[1][0:idx]] = self.mask[i[0][0:idx], i[1][0:idx]]
        return outmask

    def close(self):
        self.file.close()
            
    def __del__(self):
        self.file.close()

#saves an array as an ENVI file
def save_envi(A, fname, interleave="BSQ", wavelength=[]):
    
    #create and save a header file
    header = envi_header();
    header.setprops(A, interleave, wavelength)
    header.save(fname + ".hdr")

    #save the raw data
    file = open(fname, "wb")
    file.write(bytearray(A))
    file.close()