network_dep.py
16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 16 16:34:49 2017
@author: pavel
"""
import struct
import numpy as np
import scipy as sp
import networkx as nx
import matplotlib.pyplot as plt
import math
import time
import spharmonics
'''
Definition of the Node class
Duplicate of the node class in network
Stores the physical position, outgoing edges list and incoming edges list.
'''
class Node:
def __init__(self, point, outgoing, incoming):
self.p = point
self.o = outgoing
self.i = incoming
# def p():
# return self.p
'''
Definition of the Fiber class.
Duplicate of the Node class in network
Stores the starting vertex, the ending vertex, the points array and the radius array
'''
class Fiber:
def __init__ (self, p1, p2, pois, rads):
self.v0 = p1
self.v1 = p2
self.points = pois
self.radii = rads
'''
return the length of the fiber.
'''
def length(self):
length = 0
for i in range(len(self.points)-1):
length = length + math.sqrt(pow(self.points[i][0]- self.points[i+1][0],2) + pow(self.points[i][1]- self.points[i+1][1],2) + pow(self.points[i][2]- self.points[i+1][2],2))
return length
'''
returns the turtuosity of the fiber.
'''
def turtuosity(self):
turtuosity = 0
distance = math.sqrt(math.pow(self.points[0][0]- self.points[len(self.points)-1][0],2) + math.pow(self.points[0][1]- self.points[len(self.points)-1][1],2) + math.pow(self.points[0][2]- self.points[len(self.points)-1][2],2))
turtuosity = self.length()/distance
#print(turtuosity)
return turtuosity
'''
returns the volume of the fiber.
'''
def volume(self):
volume = 0
for i in range(len(self.points)-1):
volume = volume + 1.0/3.0 * math.pi * (math.pow(self.radii[i],2) + math.pow(self.radii[i+1],2) + self.radii[i]*self.radii[i+1]) * math.sqrt(math.pow(self.points[i][0]- self.points[i+1][0],2) + math.pow(self.points[i][1]- self.points[i+1][1],2) + math.pow(self.points[i][2]- self.points[i+1][2],2))
#print(volume)
return volume
class NWT:
'''
Writes the header given and open file descripion, number of verticies and number of edges.
'''
def writeHeader(open_file, numVerts, numEdges):
txt = "nwtFileFormat fileid(14B), desc(58B), #vertices(4B), #edges(4B): bindata"
b = bytearray()
b.extend(txt.encode())
open_file.write(b)
open_file.write(struct.pack('i', numVerts))
open_file.write(struct.pack('i', numEdges))
'''
Writes a single vertex to a file.
'''
def writeVertex(open_file, vertex):
open_file.write(struct.pack('<f',vertex.p[0]))
open_file.write(struct.pack('<f',vertex.p[1]))
open_file.write(struct.pack('<f',vertex.p[2]))
open_file.write(struct.pack('i', len(vertex.o)))
open_file.write(struct.pack('i', len(vertex.i)))
for j in range(len(vertex.o)):
open_file.write(struct.pack('i',vertex.o[j]))
for j in range(len(vertex.i)):
open_file.write(struct.pack('i', vertex.i[j]))
return
'''
Writes a single fiber to a file.
'''
def writeFiber(open_file, edge):
open_file.write(struct.pack('i',edge.v0))
open_file.write(struct.pack('i',edge.v1))
open_file.write(struct.pack('i',len(edge.points)))
for j in range(len(edge.points)):
open_file.write(struct.pack('<f', edge.points[j][0]))
open_file.write(struct.pack('<f', edge.points[j][1]))
open_file.write(struct.pack('<f', edge.points[j][2]))
open_file.write(struct.pack('<f', edge.radii[j]))
return
'''
Writes the entire network to a file in str given the vertices array and the edges array.
'''
def exportNWT(str, vertices, edges):
with open(str, "wb") as file:
NWT.writeHeader(file, len(vertices), len(edges))
for i in range(len(vertices)):
NWT.writeVertex(file, vertices[i])
for i in range(len(edges)):
NWT.writeFiber(file, edges[i])
return
'''
Reads a single vertex from an open file and returns a node Object.
'''
def readVertex(open_file):
points = np.tile(0., 3)
bytes = open_file.read(4)
points[0] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
points[1] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
points[2] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
numO = int.from_bytes(bytes, byteorder='little')
outgoing = np.tile(0, numO)
bts = open_file.read(4)
numI = int.from_bytes(bts, byteorder='little')
incoming = np.tile(0, numI)
for j in range(numO):
bytes = open_file.read(4)
outgoing[j] = int.from_bytes(bytes, byteorder='little')
for j in range(numI):
bytes = open_file.read(4)
incoming[j] = int.from_bytes(bytes, byteorder='little')
node = Node(points, outgoing, incoming)
return node
'''
Reads a single fiber from an open file and returns a Fiber object .
'''
def readFiber(open_file):
bytes = open_file.read(4)
vtx0 = int.from_bytes(bytes, byteorder = 'little')
bytes = open_file.read(4)
vtx1 = int.from_bytes(bytes, byteorder = 'little')
bytes = open_file.read(4)
numVerts = int.from_bytes(bytes, byteorder = 'little')
pts = []
rads = []
for j in range(numVerts):
point = np.tile(0., 3)
bytes = open_file.read(4)
point[0] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
point[1] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
point[2] = struct.unpack('f', bytes)[0]
bytes = open_file.read(4)
radius = struct.unpack('f', bytes)[0]
pts.append(point)
rads.append(radius)
F = Fiber(vtx0, vtx1, pts, rads)
return F
'''
Imports a NWT file at location str.
Returns a list of Nodes objects and a list of Fiber objects.
'''
class Network:
def __init__(self, filename, clock=False):
if clock:
start_time = time.time()
with open(filename, "rb") as file:
header = file.read(72)
bytes = file.read(4)
numVertex = int.from_bytes(bytes, byteorder='little')
bytes = file.read(4)
numEdges = int.from_bytes(bytes, byteorder='little')
self.N = []
self.F = []
for i in range(numVertex):
node = NWT.readVertex(file)
self.N.append(node)
for i in range(numEdges):
edge = NWT.readFiber(file)
self.F.append(edge)
if clock:
print("Network initialization: " + str(time.time() - start_time) + "s")
'''
Creates a graph from a list of nodes and a list of edges.
Uses edge length as weight.
Returns a NetworkX Object.
'''
# def createLengthGraph(self):
# G = nx.Graph()
# for i in range(len(self.nodeList)):
# G.add_node(i, p=V[i].p)
# for i in range(len(self.edgeList)):
# G.add_edge(self.edgeList[i].v0, self.edgeList[i].v1, weight = E[i].length())
#
# return G
# '''
# Creates a graph from a list of nodes and a list of edges.
# Uses edge turtuosity as weight.
# Returns a NetworkX Object.
# '''
# def createTortuosityGraph(nodeList, edgeList):
# G = nx.Graph()
# for i in range(len(nodeList)):
# G.add_node(i, p=V[i].p)
# for i in range(len(edgeList)):
# G.add_edge(edgeList[i].v0, edgeList[i].v1, weight = E[i].turtuosity())
#
# return G
# '''
# Creates a graph from a list of nodes and a list of edges.
# Uses edge volume as weight.
# Returns a NetworkX Object.
# '''
# def createVolumeGraph(nodeList, edgeList):
# G = nx.Graph()
# for i in range(len(nodeList)):
# G.add_node(i, p=V[i].p)
# for i in range(len(edgeList)):
# G.add_edge(edgeList[i].v0, edgeList[i].v1, weight = E[i].volume())
#
# return G
#'''
#Returns the positions dictionary for the Circular layout.
#'''
#def getCircularLayout(graph, dim, radius):
# return nx.circular_layout(graph, dim, radius)
#
#'''
#Return the positions dictionary for the Spring layout.
#'''
#def getSpringLayout(graph, pos, iterations, scale):
# return nx.spring_layout(graph, 2, None, pos, iterations, 'weight', scale, None)
#
#'''
#Draws the graph.
#'''
#def drawGraph(graph, pos):
# nx.draw(graph, pos)
# return
def aabb(self):
lower = self.N[0].p.copy()
upper = lower.copy()
for i in self.N:
for c in range(len(lower)):
if lower[c] > i.p[c]:
lower[c] = i.p[c]
if upper[c] < i.p[c]:
upper[c] = i.p[c]
return lower, upper
#calculate the distance field at a given resolution
# R (triple) resolution along each dimension
def distancefield(self, R=(100, 100, 100)):
#get a list of all node positions in the network
P = []
for e in self.F:
for p in e.points:
P.append(p)
#turn that list into a Numpy array so that we can create a KD tree
P = np.array(P)
#generate a KD-Tree out of the network point array
tree = sp.spatial.cKDTree(P)
plt.scatter(P[:, 0], P[:, 1])
#specify the resolution of the ouput grid
R = (200, 200, 200)
#generate a meshgrid of the appropriate size and resolution to surround the network
lower, upper = self.aabb(self.N, self.F) #get the space occupied by the network
x = np.linspace(lower[0], upper[0], R[0]) #get the grid points for uniform sampling of this space
y = np.linspace(lower[1], upper[1], R[1])
z = np.linspace(lower[2], upper[2], R[2])
X, Y, Z = np.meshgrid(x, y, z)
#Z = 150 * numpy.ones(X.shape)
Q = np.stack((X, Y, Z), 3)
D, I = tree.query(Q)
return D
#returns the number of points in the network
def npoints(self):
n = 0 #initialize the counter to zero
for f in self.F: #for each fiber
n = n + len(f.points) - 2 #count the number of points in the fiber - ignoring the end points
n = n + len(self.N) #add the number of nodes (shared points) to the node count
return n #return the number of nodes
#returns all of the points in the network
def points(self):
k = self.npoints()
P = np.zeros((3, k)) #allocate space for the point list
idx = 0
for f in self.F: #for each fiber in the network
for ip in range(1, len(f.points)-1): #for each point in the network
P[:, idx] = f.points[ip] #store the point in the raw point list
idx = idx + 1
return P #return the point array
#returns the number of linear segments in the network
def nsegments(self):
n = 0 #initialize the segment counter to 0
for f in self.F: #for each fiber
n = n + len(f.points) - 1 #calculate the number of line segments in the fiber (points - 1)
return n #return the number of line segments
#return a list of line segments representing the network
def segments(self, dtype=np.float32):
k = self.nsegments() #get the number of line segments
start = np.zeros((k, 3),dtype=dtype) #start points for the line segments
end = np.zeros((k, 3), dtype=dtype) #end points for the line segments
idx = 0 #initialize the index counter to zero
for f in self.F: #for each fiber in the network
for ip in range(0, len(f.points)-1): #for each point in the network
start[idx, :] = f.points[ip] #store the point in the raw point list
idx = idx + 1
idx = 0
for f in self.F: #for each fiber in the network
for ip in range(1, len(f.points)): #for each point in the network
end[idx, :] = f.points[ip] #store the point in the raw point list
idx = idx + 1
return start, end
#function returns the fiber associated with a given 1D line segment index
def segment2fiber(self, idx):
i = 0
for f in range(len(self.F)): #for each fiber in the network
i = i + len(self.F[f].points)-1 #add the number of points in the fiber to i
if i > idx: #if we encounter idx in this fiber
return self.F[f].points, f #return the fiber associated with idx and the index into the fiber array
def vectors(self, clock=False, dtype=np.float32):
if clock:
start_time = time.time()
start, end = self.segments(dtype) #retrieve all of the line segments
v = end - start #calculate the resulting vectors
l = np.sqrt(v[:, 0]**2 + v[:,1]**2 + v[:,2]**2) #calculate the fiber lengths
z = l==0 #look for any zero values
nz = z.sum()
if nz > 0:
print("WARNING: " + str(nz) + " line segment(s) of length zero were found in the network and will be removed" )
if clock:
print("Network::vectors: " + str(time.time() - start_time) + "s")
return np.delete(v, np.where(z), 0)
#scale all values in the network by tuple S = (sx, sy, sz)
def scale(self, S):
for f in self.F:
for p in f.points:
p[0] = p[0] * S[0]
p[1] = p[1] * S[1]
p[2] = p[2] * S[2]
for n in self.N:
n.p[0] = n.p[0] * S[0]
n.p[1] = n.p[1] * S[1]
n.p[2] = n.p[2] * S[2]
#calculate the adjacency weighting function for the network given a set of vectors X = (x, y, z) and weight exponent k
def adjacencyweight(self, P, k=200, length_threshold = 25, dtype=np.float32):
V = self.vectors(dtype) #get the vectors representing each segment
#V = V[0:n_vectors, :]
L = np.expand_dims(np.sqrt((V**2).sum(1)), 1) #calculate the length of each vector
outliers = L > length_threshold #remove outliers based on the length_threshold
V = np.delete(V, np.where(outliers), 0)
L = np.delete(L, np.where(outliers))
V = V/L[:,None] #normalize the vectors
P = np.stack(spharmonics.sph2cart(1, P[0], P[1]), P[0].ndim)
PV = P[...,None,:] * V
cos_alpha = PV.sum(PV.ndim-1)
W = np.abs(cos_alpha) ** k
return W, L