planewave.h
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#ifndef STIM_PLANEWAVE_H
#define STIM_PLANEWAVE_H
#include <string>
#include <sstream>
#include <cmath>
#include "../math/vector.h"
#include "../math/quaternion.h"
#include "../math/constants.h"
#include "../math/plane.h"
#include "../math/complex.h"
namespace stim{
namespace optics{
/// evaluate the scalar field produced by a plane wave at a point (x, y, z)
/// @param x is the x-coordinate of the point
/// @param y is the y-coordinate of the point
/// @param z is the z-coordinate of the point
/// @param A is the amplitude of the plane wave, specifically the field at (0, 0, 0)
/// @param kx is the k-vector component in the x direction
/// @param ky is the k-vector component in the y direction
/// @param kz is the k-vector component in the z direction
template<typename T>
stim::complex<T> planewave_scalar(T x, T y, T z, stim::complex<T> A, T kx, T ky, T kz){
T d = x * kx + y * ky + z * kz; //calculate the dot product between k and p = (x, y, z) to find the distance p is along the propagation direction
stim::complex<T> di = stim::complex<T>(0, d); //calculate the phase shift that will have to be applied to propagate the wave distance d
return A * exp(di); //multiply the phase term by the amplitude at (0, 0, 0) to propagate the wave to p
}
/// evaluate the scalar field produced by a plane wave at several positions
/// @param field is a pre-allocated block of memory that will store the complex field at all points
/// @param N is the number of field values to be evaluated
/// @param x is a set of x coordinates defining positions within the field (NULL implies that all values are zero)
/// @param y is a set of y coordinates defining positions within the field (NULL implies that all values are zero)
/// @param z is a set of z coordinates defining positions within the field (NULL implies that all values are zero)
/// @param A is the amplitude of the plane wave, specifically the field at (0, 0, 0)
/// @param kx is the k-vector component in the x direction
/// @param ky is the k-vector component in the y direction
/// @param kz is the k-vector component in the z direction
template<typename T>
void cpu_planewave_scalar(stim::complex<T>* field, size_t N, T* x, T* y = NULL, T* z = NULL, stim::complex<T> A = 1.0, T kx = 0.0, T ky = 0.0, T kz = 0.0){
T px, py, pz;
for(size_t i = 0; i < N; i++){ // for each element in the array
(x == NULL) ? px = 0 : px = x[i]; // test for NULL values
(y == NULL) ? py = 0 : py = y[i];
(z == NULL) ? pz = 0 : pz = z[i];
field[i] = planewave_scalar(px, py, pz, A, kx, ky, kz); // call the single-value plane wave function
}
}
template<typename T>
class planewave{
protected:
stim::vec<T> k; //k-vector, pointed in propagation direction with magnitude |k| = tau / lambda = 2pi / lambda
stim::vec< stim::complex<T> > E0; //amplitude (for a scalar plane wave, only E0[0] is used)
/// Bend a plane wave via refraction, given that the new propagation direction is known
CUDA_CALLABLE planewave<T> bend(stim::vec<T> kn) const{
stim::vec<T> kn_hat = kn.norm(); //normalize the new k
stim::vec<T> k_hat = k.norm(); //normalize the current k
planewave<T> new_p; //create a new plane wave
T k_dot_kn = k_hat.dot(kn_hat); //if kn is equal to k or -k, handle the degenerate case
//if k . n < 0, then the bend is a reflection
if(k_dot_kn < 0) k_hat = -k_hat; //flip k_hat
if(k_dot_kn == -1){
new_p.k = -k;
new_p.E0 = E0;
return new_p;
}
else if(k_dot_kn == 1){
new_p.k = k;
new_p.E0 = E0;
return new_p;
}
vec<T> r = k_hat.cross(kn_hat); //compute the rotation vector
T theta = asin(r.len()); //compute the angle of the rotation about r
quaternion<T> q; //create a quaternion to capture the rotation
q.CreateRotation(theta, r.norm());
vec< complex<T> > E0n = q.toMatrix3() * E0; //apply the rotation to E0
new_p.k = kn_hat * kmag();
new_p.E0 = E0n;
return new_p;
}
public:
///constructor: create a plane wave propagating along k
CUDA_CALLABLE planewave(vec<T> kvec = stim::vec<T>(0, 0, stim::TAU),
vec< complex<T> > E = stim::vec<T>(1, 0, 0))
{
//phi = phase;
k = kvec;
vec< complex<T> > k_hat = k.norm();
if(E.len() == 0) //if the plane wave has an amplitude of 0
E0 = vec<T>(0); //just return it
else{
vec< complex<T> > s = (k_hat.cross(E)).norm(); //compute an orthogonal side vector
vec< complex<T> > E_hat = (s.cross(k)).norm(); //compute a normalized E0 direction vector
E0 = E_hat;// * E_hat.dot(E); //compute the projection of _E0 onto E0_hat
}
E0 = E0 * exp( complex<T>(0, phase) );
}
///multiplication operator: scale E0
CUDA_CALLABLE planewave<T> & operator* (const T & rhs){
E0 = E0 * rhs;
return *this;
}
CUDA_CALLABLE T lambda() const{
return stim::TAU / k.len();
}
CUDA_CALLABLE T kmag() const{
return k.len();
}
CUDA_CALLABLE vec< complex<T> > E(){
return E0;
}
CUDA_CALLABLE vec<T> kvec(){
return k;
}
/// calculate the value of the field produced by the plane wave given a three-dimensional position
CUDA_CALLABLE vec< complex<T> > pos(T x, T y, T z){
return pos( stim::vec<T>(x, y, z) );
}
CUDA_CALLABLE vec< complex<T> > pos(vec<T> p = vec<T>(0, 0, 0)){
vec< complex<T> > result;
T kdp = k.dot(p);
complex<T> x = complex<T>(0, kdp);
complex<T> expx = exp(x);
result[0] = E0[0] * expx;
result[1] = E0[1] * expx;
result[2] = E0[2] * expx;
return result;
}
//scales k based on a transition from material ni to material nt
CUDA_CALLABLE planewave<T> n(T ni, T nt){
return planewave<T>(k * (nt / ni), E0);
}
CUDA_CALLABLE planewave<T> refract(stim::vec<T> kn) const{
return bend(kn);
}
/// Calculate the result of a plane wave hitting an interface between two refractive indices
/// @param P is a plane representing the position and orientation of the surface
/// @param n0 is the refractive index outside of the surface (in the direction of the normal)
/// @param n1 is the refractive index inside the surface (in the direction away from the normal)
/// @param r is the reflected component of the plane wave
/// @param t is the transmitted component of the plane wave
void scatter(stim::plane<T> P, T n0, T n1, planewave<T> &r, planewave<T> &t){
scatter(P, n1/n0, r, t);
}
/// Calculate the scattering result when nr = n1/n0
/// @param P is a plane representing the position and orientation of the surface
/// @param r is the ration n1/n0
/// @param n1 is the refractive index inside the surface (in the direction away from the normal)
/// @param r is the reflected component of the plane wave
/// @param t is the transmitted component of the plane wave
void scatter(stim::plane<T> P, T nr, planewave<T> &r, planewave<T> &t){
int facing = P.face(k); //determine which direction the plane wave is coming in
if(facing == -1){ //if the wave hits the back of the plane, invert the plane and nr
P = P.flip(); //flip the plane
nr = 1/nr; //invert the refractive index (now nr = n0/n1)
}
//use Snell's Law to calculate the transmitted angle
T cos_theta_i = k.norm().dot(-P.norm()); //compute the cosine of theta_i
T theta_i = acos(cos_theta_i); //compute theta_i
T sin_theta_t = (1/nr) * sin(theta_i); //compute the sine of theta_t using Snell's law
T theta_t = asin(sin_theta_t); //compute the cosine of theta_t
bool tir = false; //flag for total internal reflection
if(theta_t != theta_t){
tir = true;
theta_t = stim::PI / (T)2;
}
//handle the degenerate case where theta_i is 0 (the plane wave hits head-on)
if(theta_i == 0){
T rp = (1 - nr) / (1 + nr); //compute the Fresnel coefficients
T tp = 2 / (1 + nr);
vec<T> kr = -k;
vec<T> kt = k * nr; //set the k vectors for theta_i = 0
vec< complex<T> > Er = E0 * rp; //compute the E vectors
vec< complex<T> > Et = E0 * tp;
T phase_t = P.p().dot(k - kt); //compute the phase offset
T phase_r = P.p().dot(k - kr);
//create the plane waves
r = planewave<T>(kr, Er, phase_r);
t = planewave<T>(kt, Et, phase_t);
return;
}
//compute the Fresnel coefficients
T rp, rs, tp, ts;
rp = tan(theta_t - theta_i) / tan(theta_t + theta_i);
rs = sin(theta_t - theta_i) / sin(theta_t + theta_i);
if(tir){
tp = ts = 0;
}
else{
tp = ( 2 * sin(theta_t) * cos(theta_i) ) / ( sin(theta_t + theta_i) * cos(theta_t - theta_i) );
ts = ( 2 * sin(theta_t) * cos(theta_i) ) / sin(theta_t + theta_i);
}
//compute the coordinate space for the plane of incidence
vec<T> z_hat = -P.norm();
vec<T> y_hat = P.parallel(k).norm();
vec<T> x_hat = y_hat.cross(z_hat).norm();
//compute the k vectors for r and t
vec<T> kr, kt;
kr = ( y_hat * sin(theta_i) - z_hat * cos(theta_i) ) * kmag();
kt = ( y_hat * sin(theta_t) + z_hat * cos(theta_t) ) * kmag() * nr;
//compute the magnitude of the p- and s-polarized components of the incident E vector
complex<T> Ei_s = E0.dot(x_hat);
int sgn = E0.dot(y_hat).sgn();
vec< complex<T> > cx_hat = x_hat;
complex<T> Ei_p = ( E0 - cx_hat * Ei_s ).len() * sgn;
//compute the magnitude of the p- and s-polarized components of the reflected E vector
complex<T> Er_s = Ei_s * rs;
complex<T> Er_p = Ei_p * rp;
//compute the magnitude of the p- and s-polarized components of the transmitted E vector
complex<T> Et_s = Ei_s * ts;
complex<T> Et_p = Ei_p * tp;
//compute the reflected E vector
vec< complex<T> > Er = vec< complex<T> >(y_hat * cos(theta_i) + z_hat * sin(theta_i)) * Er_p + cx_hat * Er_s;
//compute the transmitted E vector
vec< complex<T> > Et = vec< complex<T> >(y_hat * cos(theta_t) - z_hat * sin(theta_t)) * Et_p + cx_hat * Et_s;
T phase_t = P.p().dot(k - kt);
T phase_r = P.p().dot(k - kr);
//create the plane waves
r.k = kr;
r.E0 = Er * exp( complex<T>(0, phase_r) );
t.k = kt;
t.E0 = Et * exp( complex<T>(0, phase_t) );
}
std::string str()
{
std::stringstream ss;
ss<<"Plane Wave:"<<std::endl;
ss<<" "<<E0<<" e^i ( "<<k<<" . r )";
return ss.str();
}
}; //end planewave class
} //end namespace optics
} //end namespace stim
template <typename T>
std::ostream& operator<<(std::ostream& os, stim::optics::planewave<T> p)
{
os<<p.str();
return os;
}
#endif