function.h
5.12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#ifndef RTS_FUNCTION_H
#define RTS_FUNCTION_H
#include <string>
namespace stim{
//template class for a one-dimensional function
template <class Tx, class Ty>
class function
{
protected:
std::vector<Tx> X;
std::vector<Ty> Y;
Ty range[2];
Ty bounding[2];
//comparison function for searching lambda
static bool findCeiling(Tx ax, Tx bx){
return (ax > bx);
}
//process a string to extract a function (generally delimited by tabs, commas, spaces, etc.)
void process_string(std::string s){
std::stringstream ss(s);
Tx x;
Ty y;
std::string line;
while(!ss.eof()){
std::getline(ss, line);
if(line[0] == '#') continue;
std::stringstream lstream(line);
lstream>>x; //read the x value
lstream>>y; //read the y value
if(ss.eof()) break;
insert(x, y); //insert the read value into the function
}
}
void update_range(Ty y){
//if the function is empty, just set the range to the given value
if(X.size() == 0){
range[0] = range[1] = y;
}
//otherwise compare the values and set them appropriately
if(y < range[0]) range[0] = y;
if(y > range[1]) range[1] = y;
}
public:
function(){
range[0] = range[1] = 0;
bounding[0] = bounding[1] = 0;
}
//linear interpolation
Ty linear(Tx x) const
{
if(X.size() == 0) return bounding[0]; //return zero if the function is empty
//return bounding values if x is outside the sample domain
if(x < X[0]) return bounding[0];
if(x > X.back()) return bounding[1];
unsigned int N = X.size(); //number of sample points
//declare an iterator
typedef typename std::vector< Tx >::iterator f_iter; //declare an iterator
f_iter it;
//find the first X-coordinate that is greater than x
unsigned int i;
for(i = 0; i<N; i++){
if(X[i] > x)
break;
}
//i currently holds the ceiling
//if the wavelength is past the end of the list, return the last sample point
if(i == N) return Y.back();
//if the wavelength is before the beginning of the list, return the front
else if(i == 0) return Y[0];
//otherwise interpolate
else{
Tx xMax = X[i];
Tx xMin = X[i-1];
Tx a = (x - xMin) / (xMax - xMin);
Ty riMin = Y[i - 1];
Ty riMax = Y[i];
Ty interp = riMax * a + riMin * (1 - a);
return interp;
}
}
///add a data point to a function
void insert(Tx x, Ty y)
{
unsigned int N = X.size(); //number of sample points
update_range(y); //update the range of the function
if(N == 0 || X[N-1] < x){
X.push_back(x);
Y.push_back(y);
return;
}
//declare an iterator and search for the x value
typename std::vector< Tx >::iterator it;
it = search(X.begin(), X.end(), &x, &x + 1, &function<Tx, Ty>::findCeiling);
//if the function value is past the end of the vector, add it to the back
if(*it == N){
X.push_back(x);
Y.push_back(y);
}
//otherwise add the value at the iterator position
else{
X.insert(it, x);
Y.insert(Y.begin() + *it, y);
}
}
Tx getX(unsigned int i) const{
return X[i];
}
Ty getY(unsigned int i) const{
return Y[i];
}
///get the number of data points in the function
unsigned int getN() const{
return X.size();
}
//look up an indexed component
Ty operator[](int i) const{
if(i <= X.size()){
std::cout<<"ERROR: accessing non-existing sample point in 'function'"<<std::endl;
exit(1);
}
return Y[i];
}
///linear interpolation
Tx operator()(Tx x) const{
return linear(x);
}
//add a constant to the function
function<Tx, Ty> operator+(Ty r) const{
function<Tx, Ty> result;
//if there are points in the function
if(X.size() > 0){
//add r to every point in f
for(unsigned int i=0; i<X.size(); i++){
result.X.push_back(X[i]);
result.Y.push_back(Y[i] + r);
}
}
else{
result = r;
}
return result;
}
function<Tx, Ty> & operator= (const Ty & rhs){
X.clear();
Y.clear();
bounding[0] = bounding[1] = rhs; //set the boundary values to rhs
if(rhs != 0) //if the RHS is zero, just clear, otherwise add one value of RHS
insert(0, rhs);
return *this;
}
//output a string description of the function (used for console output and debugging)
std::string str(){
unsigned int N = X.size();
std::stringstream ss;
ss<<"# of samples: "<<N<<std::endl;
if(N == 0) return ss.str();
ss<<"domain: ["<<X[0]<<", "<<X[X.size()-1]<<"]"<<std::endl;
ss<<"range: ["<<range[0]<<", "<<range[1]<<"]"<<std::endl;
return ss.str();
}
std::string str_vals(){
std::stringstream ss;
unsigned int N = X.size(); //number of sample points
//output each function value
for(unsigned int i = 0; i<N; i++){
if(i != 0) ss<<std::endl;
ss<<X[i]<<", "<<Y[i];
}
return ss.str();
}
void load(std::string filename){
std::ifstream t(filename.c_str());
std::string str((std::istreambuf_iterator<char>(t)),
std::istreambuf_iterator<char>());
process_string(str);
}
};
} //end namespace rts
#endif