update_dir.cuh 7.36 KB
#ifndef STIM_CUDA_UPDATE_DIR_H
#define STIM_CUDA_UPDATE_DIR_H

# include <iostream>
# include <cuda.h>
#include <stim/cuda/cudatools.h>
#include <stim/cuda/sharedmem.cuh>

namespace stim{
	namespace cuda{
	
		// this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area.
		template<typename T>
		__global__ void cuda_update_dir(T* gpuDir, cudaTextureObject_t in, T* gpuGrad, T* gpuTable, T phi, int rmax,  int x,  int y){

			//generate a pointer to shared memory (size will be specified as a kernel parameter)
			extern __shared__ float s_vote[];

			//calculate the start point for this block
			int bxi = blockIdx.x * blockDim.x;
			
			// calculate the 2D coordinates for this current thread.
			int xi = bxi + threadIdx.x;
			int yi = blockIdx.y * blockDim.y + threadIdx.y;

			// convert 2D coordinates to 1D
			int i = yi * x + xi;

			// calculate the voting direction based on the grtadient direction
			float theta = gpuGrad[2*i];

			//initialize the vote direction to zero
			gpuDir[i] = 0;

			// define a local variable to maximum value of the vote image in the voting area for this voter
			float max = 0;

			// define two local variables for the x and y coordinations where the maximum happened
			int id_x = 0;
			int id_y = 0;

			//calculate the width of the shared memory block
			int swidth = 2 * rmax + blockDim.x;

			// compute the size of window which will be checked for finding the voting area for this voter
			int x_table = 2*rmax +1;
			int rmax_sq = rmax * rmax;
			int tx_rmax = threadIdx.x + rmax;
			int bxs = bxi - rmax;
						
			for(int yr = -rmax; yr <= rmax; yr++){

				//copy the portion of the image necessary for this block to shared memory
				__syncthreads();
				stim::cuda::sharedMemcpy_tex2D<float>(s_vote, in, bxs, yi + yr , swidth, 1, threadIdx, blockDim);
				__syncthreads();
				
				//if the current thread is outside of the image, it doesn't have to be computed
				if(xi < x && yi < y){

					for(int xr = -rmax; xr <= rmax; xr++){

						unsigned int ind_t = (rmax - yr) * x_table + rmax - xr;

						// calculate the angle between the voter and the current pixel in x and y directions
						float atan_angle = gpuTable[ind_t];
						
						// calculate the voting direction based on the grtadient direction
						int idx_share_update = xr + tx_rmax ;
						float share_vote = s_vote[idx_share_update];
						
						// check if the current pixel is located in the voting area of this voter.
						if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) <phi)){

						// compare the vote value of this pixel with the max value to find the maxima and its index.
							if  (share_vote>max) {

								max = share_vote;
								id_x =  xr;
								id_y =  yr;
							}
						}
					}
				}
			}
							
		unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x);
		float new_angle = gpuTable[ind_m];

		if(xi < x && yi < y)
			gpuDir[i] = new_angle;

		}

		// this kernel updates the gradient direction by the calculated voting direction.
		template<typename T>
		__global__ void cuda_update_grad(T* gpuGrad, T* gpuDir, int x, int y){

			// calculate the 2D coordinates for this current thread.
			int xi = blockIdx.x * blockDim.x + threadIdx.x;
			int yi = blockIdx.y * blockDim.y + threadIdx.y;
		
			// convert 2D coordinates to 1D
			int i = yi * x + xi;
			
			//update the gradient image with the vote direction
			gpuGrad[2*i] = gpuDir[i];
		}
		
		template<typename T>
		void gpu_update_dir(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){

			//get the number of pixels in the image
			unsigned int pixels = x * y;
			unsigned int bytes = sizeof(T) * pixels;
						
			unsigned int max_threads = stim::maxThreadsPerBlock();
			dim3 threads(max_threads, 1);
			dim3 blocks(x/threads.x + (x %threads.x == 0 ? 0:1) , y);
			
			//define a channel descriptor for a single 32-bit channel
			cudaChannelFormatDesc channelDesc =
					   cudaCreateChannelDesc(32, 0, 0, 0,
											 cudaChannelFormatKindFloat);
			cudaArray* cuArray;												//declare the cuda array
			cudaMallocArray(&cuArray, &channelDesc, x, y);			//allocate the cuda array

			// Copy the image data from global memory to the array
			cudaMemcpyToArray(cuArray, 0, 0, gpuVote, bytes,
							  cudaMemcpyDeviceToDevice);

			// Specify texture
			struct cudaResourceDesc resDesc;				//create a resource descriptor
			memset(&resDesc, 0, sizeof(resDesc));			//set all values to zero
			resDesc.resType = cudaResourceTypeArray;		//specify the resource descriptor type
			resDesc.res.array.array = cuArray;				//add a pointer to the cuda array

			// Specify texture object parameters
			struct cudaTextureDesc texDesc;							//create a texture descriptor
			memset(&texDesc, 0, sizeof(texDesc));					//set all values in the texture descriptor to zero
			texDesc.addressMode[0]   = cudaAddressModeWrap;			//use wrapping (around the edges)
			texDesc.addressMode[1]   = cudaAddressModeWrap;
			texDesc.filterMode       = cudaFilterModePoint;		//use linear filtering
			texDesc.readMode         = cudaReadModeElementType;		//reads data based on the element type (32-bit floats)
			texDesc.normalizedCoords = 0;							//not using normalized coordinates

			// Create texture object
			cudaTextureObject_t texObj = 0;
			cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL);

			// specify  share memory
			unsigned int share_bytes = (2*rmax + threads.x)*(1)*4;
			
			// allocate space on the GPU for the updated vote direction
			T* gpuDir;
			cudaMalloc(&gpuDir, bytes);	

			//call the kernel to calculate the new voting direction
			cuda_update_dir <<< blocks, threads, share_bytes >>>(gpuDir, texObj, gpuGrad, gpuTable, phi, rmax, x , y);

			//call the kernel to update the gradient direction
			cuda_update_grad <<< blocks, threads >>>(gpuGrad, gpuDir, x , y);
			
			//free allocated memory
			cudaFree(gpuDir);

			cudaDestroyTextureObject(texObj);
			cudaFreeArray(cuArray);

		}
		
		template<typename T>
		void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){

			//calculate the number of bytes in the array
			unsigned int bytes = x * y * sizeof(T);

			//calculate the number of bytes in the atan2 table
			unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T);

			//allocate space on the GPU for the Vote Image
			T* gpuVote;
			cudaMalloc(&gpuVote, bytes);

			//copy the input vote image to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice));	

			//allocate space on the GPU for the input Gradient image
			T* gpuGrad;
			HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2));

			//copy the Gradient data to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice));

			//allocate space on the GPU for the atan2 table
			T* gpuTable;
			HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table));

			//copy the atan2 values to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice));
						
			//call the GPU version of the update direction function
			gpu_update_dir<T>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
							
			//copy the new gradient image back to the CPU
			cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ;

			//free allocated memory
			cudaFree(gpuTable);
			cudaFree(gpuVote);
			cudaFree(gpuGrad);
		}
		
	}
}

#endif