image.h
5.19 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#ifndef STIM_IMAGE_H
#define STIM_IMAGE_H
#ifdef JPEG_FOUND
#define cimg_use_jpeg //necessary for JPG files
#endif
#include "CImg.h"
#include <vector>
#include <iostream>
namespace stim{
//This static class provides the STIM interface for loading images
// Use this interface for all image management - that way the actual library can be changed without problems
//currently this interface uses CImg
// T = data type (usually unsigned char)
template <class T>
class image{
cimg_library::CImg<T> img;
public:
//default constructor
image(){
}
//constructor (load an image file)
image(std::string filename){
img.load(filename.c_str());
}
/// Constructor initializes an image to a given size
/*image(unsigned int x, unsigned int y = 1, unsigned int z = 1){
img = cimg_library::CImg<T>(x, y, z);
}*/
image(unsigned int x, unsigned int y = 1, unsigned int z = 1, unsigned int c = 1){
img = cimg_library::CImg<T>(x, y, z, c);
}
//Load an image from a file
void load(std::string filename){
img.load(filename.c_str());
}
//save a file
void save(std::string filename){
img.save(filename.c_str());
}
//create an image from an interleaved buffer
void set_interleaved(T* buffer, unsigned int width, unsigned int height, unsigned int channels = 1){
T* non_interleaved = (T*)malloc(width * height * 3 * sizeof(T));
unsigned int S = width * height;
for(unsigned int i = 0; i < S; i++){
for(unsigned int c = 0; c < channels; c++){
non_interleaved[i + c * S] = buffer[i * channels + c];
}
}
img = cimg_library::CImg<T>(non_interleaved, width, height, 1, channels);
}
//fills an allocated region of memory with non-interleaved data
void data_noninterleaved(T* data){
memcpy(data, img.data(), sizeof(T) * size());
}
void data_interleaved(T* data){
unsigned int C = channels();
unsigned int X = width() * height();
T* ptr = img.data();
//for each channel
for(unsigned int c = 0; c < C; c++)
//convert each pixel
for(unsigned int x = 0; x < X; x++)
data[x * C + c] = ptr[c * X + x];
}
image<T> channel(unsigned int c){
//create a new image
image<T> single;
single.img = img.get_channel(c);
return single;
}
/// Copy the given data to the specified channel
/// @param c is the channel number that the data will be copied to
/// @param buffer is a pointer to the image to be copied to channel c
void set_channel(unsigned int c, T* buffer){
//calculate the number of pixels in a channel
unsigned int channel_size = width() * height();
//retreive a pointer to the raw image data
T* ptr = img.data() + channel_size * c;
//copy the buffer to the specified channel
memcpy(ptr, buffer, sizeof(T) * channel_size);
}
image<T> getslice(unsigned int c){
//create a new image
image<T> slice;
slice.img = img.get_slice(c);
return slice;
}
unsigned int channels(){
return (unsigned int)img.spectrum();
}
unsigned int width(){
return img.width();
}
unsigned int height(){
return img.height();
}
T* data(){
return img.data();
}
//returns the size (number of values) of the image
unsigned long size(){
return img.size();
}
/// Returns the number of nonzero values
unsigned int nnz(){
unsigned long P = width() * height();
unsigned long C = channels();
T* ptr = img.data();
unsigned long n = 0;
for(unsigned long p = 0; p < P; p++){
for(unsigned long c = 0; c < C; c++){
if(ptr[c * P + p] > 0){
n++;
break;
}
}
}
return n; //return the number of nonzero pixels
}
//this function returns indices of pixels that have nonzero values
std::vector<unsigned long> sparse_idx(){
std::vector<unsigned long> s; //allocate an array
s.resize(nnz()); //allocate space in the array
unsigned long P = width() * height();
unsigned long C = channels();
T* ptr = img.data(); //get a pointer to the image data
unsigned long i = 0;
for(unsigned long p = 0; p < P; p++){
for(unsigned long c = 0; c < C; c++){
if(ptr[c * P + p] > 0){
s[i] = p;
i++;
break;
}
}
}
return s; //return the index list
}
/// Returns the maximum pixel value in the image
T maxv(){
float max = 0;
unsigned long N = width() * height(); //get the number of pixels
for (unsigned long i=0; i<N; i++){
if (img.data()[i] > max)
{
max = img.data()[i];
}
}
return max;
}
/// Returns the minimum pixel value in the image
T minv(){
float min = 0;
unsigned long N = width() * height(); //get the number of pixels
for (unsigned long i=0; i<N; i++){
if (img.data()[i] < min)
{
min = img.data()[i];
}
}
return min;
}
image<T> srgb2lab(){
image<T> rgb;
rgb.img = img.get_sRGBtoRGB();
image<T> lab;
lab.img = rgb.img.get_RGBtoLab();
return lab;
}
image<T> convolve2(image<T> mask){
image<T> result;
result.img = img.get_convolve(mask.img);
return result;
}
image<T> rotate(float angle, float cx, float cy){
image<T> result;
float zoom = 1;
unsigned int interpolation = 1;
unsigned int boundary = 1;
result.img = img.get_rotate (angle, cx, cy, zoom, interpolation, boundary);
//result.save("data_output/test_rotate_neum.bmp");
return result;
}
};
}; //end namespace stim
#endif