obj.h 26.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#ifndef STIM_OBJ_H
#define STIM_OBJ_H

#include <vector>
#include <sstream>
#include <fstream>
#include <stdlib.h>
#include <stim/parser/parser.h>
#include <stim/math/vector.h>
#include <stim/visualization/obj/obj_material.h>
#include <algorithm>

#include <time.h>

namespace stim{

/** This class provides an interface for loading, saving, and working with Wavefront OBJ files.
 *  The class structure uses similar terminology to the OBJ file structure, so one familiar with it
 *  should be able to work well with this class.
 *
 *  This class currently provides the ability to load explicitly defined geometric objects, including point lists,
 *  lines, and faces with positions, texture coordinates, and normals. This data is stored in a protected series
 *  of lists that are accessible to classes that extend this one.
 *
 *  Multiple helper classes are used to facilitate loading, storing, and saving geometry. These are protected
 *  and therefore only designed to be used within the confines of the class. These helper classes include:
 *
 *  vertex class - contains methods for loading, saving, and storing 1, 2, 3, and 4 component vectors
 *  triplet class - contains methods for loading, saving, and storing indexed vertices used for geometric objects
 *  geometry class - contains a list of triplets used to define a geometric structure, such as a face or line
 */

enum obj_type { OBJ_NONE, OBJ_LINE, OBJ_FACE, OBJ_POINTS, OBJ_TRIANGLE_STRIP };

template <typename T>
class obj{

protected:

	enum token_type { OBJ_INVALID, OBJ_V, OBJ_VT, OBJ_VN, OBJ_P, OBJ_L, OBJ_F };

	struct vertex : public stim::vec<T>{

		using vec<T>::push_back;
		using vec<T>::size;
		using vec<T>::at;
		using vec<T>::resize;

		//basic constructors (call the stim::vector constructors)
		vertex(){}
		vertex(T x){
			resize(1);
			at(0) = x;
		}
		vertex(T x, T y) : stim::vec<T>(x, y){}
		vertex(T x, T y, T z) : stim::vec<T>(x, y, z){}
		vertex(T x, T y, T z, T w) : stim::vec<T>(x, y, z, w){}

		vertex(stim::vec<T> rhs) : stim::vec<T>(rhs){}

		//constructor creates a vertex from a line string
		vertex(std::string line){

			//create a temporary vector used to store string tokens
			std::vector<std::string> tokens = stim::parser::split(line, ' ');

			//create temporary storage for casting the token values
			T val;

			//for each token (skipping the first)
			for(unsigned int i =  1; i < tokens.size(); i++){
				std::stringstream ss(tokens[i]);				//create a stringstream object for casting
				ss>>val;										//cast the token to the correct numerical value
				push_back(val);									//push the coordinate into the vertex
			}
		}

		//output the vertex as a string
		std::string str(){

			std::stringstream ss;
			
			for(int i = 0; i < size(); i++){
				if(i > 0)
					ss<<' ';

				ss<<at(i);
			}

			return ss.str();	//return the vertex string
		}


	};	//end vertex

	//triplet used to specify geometric vertices consisting of a position vertex, texture vertex, and normal
	struct triplet : public std::vector<size_t>{

		//default constructor, empty triplet
		triplet(){}
		
		//create a triplet given a parameter list (OBJ indices start at 1, so 0 can be used to indicate no value)
		triplet(size_t v, size_t vt = 0, size_t vn = 0){
			push_back(v);
			if(vn != 0){
				push_back(vt);
				push_back(vn);
			}
			else if(vt != 0)
				push_back(vt);
		}

		//build a triplet from a string
		triplet(std::string s){

			//create a temporary vector used to store string tokens
			std::vector<std::string> tokens = stim::parser::split(s, '\\');

			//std::cout<<"processing triplet: "<<s<<std::endl;
			if(tokens.size() >= 1)
				push_back( atoi( tokens[0].c_str() ) );

			if(tokens.size() >= 2){
				if(tokens[1].length())
					push_back( atoi( tokens[1].c_str() ) );
				else
					push_back(0);
			}

			if(tokens.size() == 3)
				push_back( atoi( tokens[2].c_str() ) );

		}

		//output the geometry as a string
		std::string str(){

			std::stringstream ss;

			ss<<at(0);	//the vertex is always the first value

			if(size() == 3){
				if(at(1) == 0)
					ss<<"//"<<at(2);
				else
					ss<<'/'<<at(1)<<'/'<<at(2);
			}
			else if(size() == 2)
				ss<<"/"<<at(1);

			return ss.str();
		}

	};	//end triplet

	//geometry used to specify a geometric structure consisting of several triplets
	struct geometry : public std::vector<triplet>{

		using std::vector<triplet>::size;
		using std::vector<triplet>::at;
		using std::vector<triplet>::push_back;
		using std::vector<triplet>::resize;

		geometry(){}

		//constructs a geometry object from a line read from an OBJ file
		geometry(std::string line){

			//create a temporary vector used to store string tokens
			std::vector<std::string> tokens = stim::parser::split(line, ' ');

			resize(tokens.size() - 1);											//set the geometry size based on the number of tokens
			//for each triplet in the line
			for(unsigned int i = 1; i < tokens.size(); i++){
				//construct the triplet and push it to the geometry
				//push_back( triplet(tokens[i]) );
				at(i-1) = triplet(tokens[i]);
			}

		}

		//returns a vector containing the vertex indices for the geometry
		void get_v(std::vector<unsigned>& v){
			v.resize(size());							//resize the vector to match the number of vertices
			for(unsigned int i = 0; i<size(); i++){		//for each vertex
				v[i] = at(i)[0];						//copy the vertex index (1st element of triplet)
			}
		}

		void get_vt(std::vector<unsigned>& vt){
			vt.resize(size());							//resize the vector to match the number of vertices
			for(unsigned int i = 0; i<size(); i++)		//for each vertex
				vt[i] = at(i)[1];						//copy the vertex texture index (2nd element of triplet)
		}

		void get_vn(std::vector<unsigned>& vn){
			vn.resize(size());							//resize the vector to match the number of vertices
			for(unsigned int i = 0; i<size(); i++)		//for each vertex
				vn[i] = at(i)[2];						//copy the vertex index
		}

		std::string str(){

			std::stringstream ss;

			for(unsigned int i = 0; i < size(); i++){

				if(i != 0)
					ss<<' ';

				ss<<at(i).str();
			}

			return ss.str();
		}
	};

	std::vector<vertex> V;		//vertex spatial position
	std::vector<vertex> VN;
	std::vector<vertex> VT;

	//structure lists
	std::vector<geometry> L;	//list of lines
	std::vector<geometry> P;	//list of points structures
	std::vector<geometry> F;	//list of faces

	//material lists
	std::vector< obj_material<T> > M;	//list of material descriptors
	std::vector<size_t> Mf;			//face index where each material begins

	//information for the current geometric object
	geometry current_geo;
	vertex current_vt;
	vertex current_vn;
	obj_material<T> current_material;					//stores the current material
	bool new_material;								//flags if a material property has been changed since the last material was pushed

		//flags for the current geometric object
		obj_type current_type;
		bool geo_flag_vt;
		bool geo_flag_vn;
		bool vert_flag_vt;
		bool vert_flag_vn;

	void update_vt(vertex vt){
		current_vt = vt;

		//the geometry vertex texture flag can only be set for the first vertex
		if(current_geo.size() == 0)
			geo_flag_vt = true;

		vert_flag_vt = true;
	}

	void update_vn(vertex vn){
		current_vn = vn;

		//the geometry normal flag can only be set for the first vertex
		if(current_geo.size() == 0)
			geo_flag_vn = true;

		vert_flag_vn = true;
	}

	//create a triple and add it to the current geometry
	void update_v(vertex vv){

		size_t v;
		size_t vt = 0;
		size_t vn = 0;

		//if the current geometry is using a texture coordinate, add the current texture coordinate to the geometry
		if(geo_flag_vt){
			if(vert_flag_vt)				//don't add it more than once
				VT.push_back(current_vt);
			vt = VT.size();
		}

		//if the current geometry is using a normal, add the current texture coordinate to the geometry
		if(geo_flag_vn){
			if(vert_flag_vn)				//don't add it more than once
				VN.push_back(current_vn);
			vn = VN.size();
		}

		//add the current vertex position to the geometry
		V.push_back(vv);
		v = V.size();

		//create a triplet and add it to the current geometry
		current_geo.push_back(triplet(v, vt, vn));

		//clear the vertex flags
		vert_flag_vt = false;
		vert_flag_vn = false;
	}

	void init(){
		//clear all lists
		V.clear();
		VT.clear();
		VN.clear();
		P.clear();
		L.clear();
		F.clear();

		//initialize all of the flags
		current_type = OBJ_NONE;
		geo_flag_vt = false;
		geo_flag_vn = false;
		vert_flag_vt = false;
		vert_flag_vn = false;

		new_material = false;						//initialize a new material to false (start with no material)
	}

	//gets the type of token representing the entry in the OBJ file
	token_type get_token(std::string s){

		//if the line contains a vertex
		if(s[0] == 'v'){
			if(s[1] == ' ') return OBJ_V;
			if(s[1] == 't') return OBJ_VT;
			if(s[1] == 'n') return OBJ_VN;
		}

		if(s[0] == 'l' && s[1] == ' ') return OBJ_L;
		if(s[0] == 'p' && s[1] == ' ') return OBJ_P;
		if(s[0] == 'f' && s[1] == ' ') return OBJ_F;

		return OBJ_INVALID;
	}

public:
	/// Constructor loads a Wavefront OBJ file
	obj(std::string filename){
		load(filename);
	}

	//functions for setting the texture coordinate for the next vertex
	void TexCoord(T x){ update_vt(vertex(x));}
	void TexCoord(T x, T y){ update_vt(vertex(x, y));}
	void TexCoord(T x, T y, T z){ update_vt(vertex(x, y, z));}
	void TexCoord(T x, T y, T z, T w){ update_vt(vertex(x, y, z, w));}

	//functions for setting the normal for the next vertex
	void Normal(T x){ update_vn(vertex(x));}
	void Normal(T x, T y){ update_vn(vertex(x, y));}
	void Normal(T x, T y, T z){ update_vn(vertex(x, y, z));}
	void Normal(T x, T y, T z, T w){ update_vn(vertex(x, y, z, w));}

	//functions for setting the next vertex position (note that this updates the current geometry)
	void Vertex(T x){ update_v(vertex(x));}
	void Vertex(T x, T y){ update_v(vertex(x, y));}
	void Vertex(T x, T y, T z){ update_v(vertex(x, y, z));}
	void Vertex(T x, T y, T z, T w){ update_v(vertex(x, y, z, w));}

	///Material functions
	void matKa(T r, T g, T b) {
		new_material = true;
		current_material.ka[0] = r;
		current_material.ka[1] = g;
		current_material.ka[2] = b;
	}
	void matKa(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_ka = tex;
	}
	void matKd(T r, T g, T b) {
		new_material = true;
		current_material.kd[0] = r;
		current_material.kd[1] = g;
		current_material.kd[2] = b;
	}
	void matKd(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_kd = tex;
	}
	void matKs(T r, T g, T b) {
		new_material = true;
		current_material.ks[0] = r;
		current_material.ks[1] = g;
		current_material.ks[2] = b;
	}
	void matKs(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_ks = tex;
	}
	void matNs(T n) {
		new_material = true;
		current_material.ns = n;
	}
	void matNs(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_ns = tex;
	}
	void matIllum(int i) {
		new_material = true;
		current_material.illum = i;
	}
	void matD(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_alpha = tex;
	}
	void matBump(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_bump = tex;
	}
	void matDisp(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_disp = tex;
	}
	void matDecal(std::string tex = std::string()) {
		new_material = true;
		current_material.tex_decal = tex;
	}

	///This function starts drawing of a primitive object, such as a line, face, or point set

	/// @param t is the type of object to be drawn: OBJ_POINTS, OBJ_LINE, OBJ_FACE
	void Begin(obj_type t){
		if (new_material) {							//if a new material has been specified
			if (current_material.name == "") {		//if a name wasn't given, create a new one
				std::stringstream ss;				//create a name for it
				ss << "material" << M.size();		//base it on the material number
				current_material.name = ss.str();
			}
			Mf.push_back(F.size());					//start the material at the current face index
			M.push_back(current_material);			//push the current material
			current_material.name = "";			//reset the name of the current material
			new_material = false;
		}
		current_type = t;
	}

	//generates a list of faces from a list of points, assuming the input list forms a triangle strip
	std::vector<geometry> genTriangleStrip(geometry s) {
		if (s.size() < 3) return std::vector<geometry>();	//return an empty list if there aren't enough points to form a triangle
		size_t nt = s.size() - 2;							//calculate the number of triangles in the strip
		std::vector<geometry> r(nt);								//create a list of geometry objects, where the number of faces = the number of triangles in the strip

		r[0].push_back(s[0]);
		r[0].push_back(s[1]);
		r[0].push_back(s[2]);
		for (size_t i = 1; i < nt; i++) {
			if (i % 2) {
				r[i].push_back(s[i + 1]);
				r[i].push_back(s[i + 0]);
				r[i].push_back(s[i + 2]);
			}
			else {
				r[i].push_back(s[i + 0]);
				r[i].push_back(s[i + 1]);
				r[i].push_back(s[i + 2]);
			}
		}
		return r;		
	}

	/// This function terminates drawing of a primitive object, such as a line, face, or point set
	void End(){
		//copy the current object to the appropriate list
		if(current_geo.size() != 0)
		{
			switch(current_type){

			case OBJ_NONE:
				std::cout<<"STIM::OBJ error, objEnd() called before objBegin()."<<std::endl;
				break;

			case OBJ_POINTS:
				P.push_back(current_geo);
				break;

			case OBJ_LINE:
				L.push_back(current_geo);
				break;

			case OBJ_FACE:
				F.push_back(current_geo);
				break;

			case OBJ_TRIANGLE_STRIP:
				std::vector<geometry> tstrip = genTriangleStrip(current_geo);		//generate a list of faces from the current geometry
				F.insert(F.end(), tstrip.begin(), tstrip.end());					//insert all of the triangles into the face list
				break;
			}
		}
		//clear everything
		current_type = OBJ_NONE;
		current_geo.clear();
		vert_flag_vt = false;
		vert_flag_vn = false;
		geo_flag_vt = false;
		geo_flag_vn = false;
	}
//temporary convenience method
	void rev(){
		if(current_geo.size() != 0)
		//	current_geo.reverse(current_geo.begin(), current_geo.end());
			std::reverse(current_geo.begin(), current_geo.end());
	}

	//output the OBJ structure as a string
	std::string str(){

		std::stringstream ss;

		unsigned int i;
		
		//output all of the vertices
		if(V.size()){
			ss<<"#vertex positions"<<std::endl;
			for(i = 0; i < V.size(); i++){
				ss<<"v "<<V[i].str()<<std::endl;
			}
		}

		//output all of the texture coordinates
		if(VT.size()){
			ss<<std::endl<<"#vertex texture coordinates"<<std::endl;
			for(i = 0; i < VT.size(); i++){
				ss<<"vt "<<VT[i].str()<<std::endl;
			}
		}

		//output all of the normals
		if(VN.size()){
			ss<<std::endl<<"#vertex normals"<<std::endl;
			for(i = 0; i < VN.size(); i++){
				ss<<"vn "<<VN[i].str()<<std::endl;
			}
		}

		//output all of the points
		if(P.size()){
			ss<<std::endl<<"#point structures"<<std::endl;
			for(i = 0; i < P.size(); i++){
				ss<<"p "<<P[i].str()<<std::endl;
			}
		}

		//output all of the lines
		if(L.size()){
			ss<<std::endl<<"#line structures"<<std::endl;
			for(i = 0; i < L.size(); i++){
				ss<<"l "<<L[i].str()<<std::endl;
			}
		}

		//output all of the faces
		if(F.size()){
			ss<<std::endl<<"#face structures"<<std::endl;
			size_t mi = 0;											//start the current material index at 0
			for(i = 0; i < F.size(); i++){
				if (mi < M.size() && Mf[mi] == i) {
					ss << "usemtl " << M[mi].name << std::endl;
					mi++;
				}
				ss<<"f "<<F[i].str()<<std::endl;
			}
		}

		return ss.str();	//return the constructed string
	}

	///Output the material file as a string
	std::string matstr() {
		std::stringstream ss;
		for (size_t i = 0; i < M.size(); i++) {
			ss << M[i].str() << std::endl;
		}
		return ss.str();
	}

	obj(){
		init();		//private function that initializes everything
	}

	void clear(){
		init();
	}

	/// This function saves the current structure as a Wavefront OBJ file

	/// @param filename is the name of the file to be saved
	bool save(std::string filename){

		

		std::string obj_ext = ".obj";
		size_t ext_found = filename.find(obj_ext);
		if (ext_found != std::string::npos)									//if the extension was found
			filename = filename.substr(0, ext_found);
		std::string obj_filename;
		std::string mtl_filename;
		obj_filename = filename + ".obj";
		mtl_filename = filename + ".mtl";


		std::ofstream outfile(obj_filename.c_str());
		if (!outfile) {
			std::cout << "STIM::OBJ error opening file for writing" << std::endl;
			return false;
		}

		if (M.size())															//if there are any materials, there will be a corresponding material file
			outfile << "mtllib " << mtl_filename << std::endl;				//output the material library name

		//output the OBJ data to the file
		outfile<<str();

		//close the file
		outfile.close();

		if (M.size()) {															//if materials are used
			
			outfile.open(mtl_filename.c_str());										//open the material file
			for (size_t i = 0; i < M.size(); i++) {								//for each material
				outfile << M[i].str() << std::endl;								//output the material name and properties
			}
			outfile.close();
		}

		return true;
	}

	/// Load a Wavefront OBJ file (support for faces, lines, and point lists)

	/// @param filename is the name of the OBJ file to load
	bool load(std::string filename){

		//load the file
		std::ifstream infile(filename.c_str());

		//if the file is invalid, throw an error
		if(!infile){
			std::cout<<"STIM::OBJ Error loading file "<<filename<<std::endl;
			return false;
		}

		std::string line;
		getline(infile, line);		//get the first line
		unsigned int l = 0;
		while(infile){
			l++;
			//unsigned int t = time(NULL);

			//get the token representing the first parameter
			token_type token = get_token(line);

			switch(token){

			case OBJ_INVALID:
				break;

			case OBJ_V:
				V.push_back(vertex(line));
				break;

			case OBJ_VT:
				VT.push_back(vertex(line));
				break;

			case OBJ_VN:
				VN.push_back(vertex(line));
				break;

			case OBJ_F:
				F.push_back(geometry(line));
				break;

			case OBJ_L:
				
				L.push_back(geometry(line));
				break;

			};

			
			//get the next line
			getline(infile, line);

		}

		//close the file
		infile.close();

		return true;

	}

	/// Return the number of position vertices in the OBJ model
	unsigned int numV(){
		return V.size();
	}

	unsigned int numVT() {
		return VT.size();
	}

	/// Retrieve the vertex stored in index i
	/// @param vi is the desired vertex index
	stim::vec<T> getV(unsigned int vi){
		stim::vec<T> v = V[vi];
		return v;
	}
	std::vector< stim::vec<T> > getAllV(std::vector<unsigned> vertexIndices){
		 std::vector< stim::vec<T> > allVerticesList;
		 for (unsigned int i=0; i<numV(); i++)
		 {
			 vertexIndices[i] = i + 1;
		 }
		 allVerticesList = getV(vertexIndices);
		 return allVerticesList;
	}
	int 
	getIndex(std::vector< stim::vec<T> >allVerticesList, stim::vec<T> v0) 
	{
		int result = 0;
		for (unsigned int i = 0; i < allVerticesList.size() ; i++)
		{
			if (allVerticesList[i] == v0) 
			{
				result = i;
			}
		}
		return result;
    }

	/// Retrieve the vertex texture coordinate at index i
	/// @param vti is the desired index
	stim::vec<T> getVT(unsigned int vti){
		stim::vec<T> vt = VT[vti];
		return vt;
	}

	/// Retrieve the vertex normal at index i
	/// @param vni is the desired index
	stim::vec<T> getVN(unsigned int vni){
		stim::vec<T> vn = VN[vni];
		return vn;
	}


	/// Retrieve a vertex stored at a list of given indices
	/// @param vi is an array containing a series of indices
	std::vector< stim::vec<T> > getV( std::vector<unsigned> vi ){

		std::vector< stim::vec<T> > v;
		v.resize(vi.size());							//pre-allocate an array of vertices

		for(unsigned i = 0; i < vi.size(); i++)
			v[i] = V[vi[i] - 1];

		return v;										//return the array of vertices
	}

	/// Retrieve a vertex stored at a list of given indices
	/// @param vi is an array containing a series of indices
	std::vector< stim::vec<T> > getVT( std::vector<unsigned> vti ){

		std::vector< stim::vec<T> > vt;
		vt.resize(vti.size());							//pre-allocate an array of vertices

		for(unsigned i = 0; i < vti.size(); i++)
			vt[i] = VT[vti[i] - 1];

		return vt;										//return the array of vertices
	}

	/// Retrieve a vertex stored at a list of given indices
	/// @param vi is an array containing a series of indices
	std::vector< stim::vec<T> > getVN( std::vector<unsigned> vni ){

		std::vector< stim::vec<T> > vn;
		vn.resize(vni.size());							//pre-allocate an array of vertices

		for(unsigned i = 0; i < vni.size(); i++)
			vn[i] = VN[vni[i] - 1];

		return vn;										//return the array of vertices
	}

	stim::vec<T> centroid(){

		//get the number of coordinates
		unsigned int N = V[0].size();

		//allocate space for the minimum and maximum coordinate points (bounding box corners)
		stim::vec<float> vmin, vmax;
		vmin.resize(N);
		vmax.resize(N);

		//find the minimum and maximum value for each coordinate
		unsigned int NV = V.size();
		for(unsigned int v = 0; v < NV; v++)
			for(unsigned int i = 0; i < N; i++){

				if(V[v][i] < vmin[i])
					vmin[i] = V[v][i];
				if(V[v][i] > vmax[i])
					vmax[i] = V[v][i];
			}

		//find the centroid using the min and max points
		stim::vec<T> c = vmin * 0.5 + vmax * 0.5;

		return c;
	}

	/// Returns the number of lines in the OBJ structure
	unsigned int numL(){
		return L.size();
	}

	/// Returns all points in the line corresponding to a given index

	/// @param i is the index of the desired line
	std::vector< stim::vec<T> > getL_V(unsigned int i){

		//get the number of points in the specified line
		unsigned int nP = L[i].size();
		//create a vector of points
		std::vector< stim::vec<T> > l;

		//set the size of the vector
		l.resize(nP);

		//copy the points from the point list to the stim vector
		unsigned int pie;
		for(unsigned int p = 0; p < nP; p++){

			//get the index of the geometry point
			pie = L[i][p][0] - 1;

			//get the coordinates of the current point
			stim::vec<T> newP = V[pie];

			//copy the point into the vector
			l[p] = newP;
		}

		return l;

	}

	/// Returns the vertex indices for the specified line
	/// @param i is the index of the line
	std::vector< unsigned int > getL_Vi(unsigned int i){

		unsigned int nP = L[i].size();

		std::vector< unsigned int > l;

		//set the size of the vector
		l.resize(nP);

		//copy the indices from the geometry structure to the array
		for(unsigned int p = 0; p < nP; p++){
			
			l[p] = L[i][p][0];

		}

		return l;
	}


	/// Returns a vector containing the list of texture coordinates associated with each point of a line.

	/// @param i is the index of the desired line
	std::vector< stim::vec<T> > getL_VT(unsigned int i){

		//get the number of points in the specified line
		unsigned int nP = L[i].size();

		//create a vector of points
		std::vector< stim::vec<T> > l;

		//set the size of the vector
		l.resize(nP);

		//copy the points from the point list to the stim vector
		unsigned int pie;
		for(unsigned int p = 0; p < nP; p++){

			//get the index of the geometry point
			pie = L[i][p][1] - 1;

			//get the coordinates of the current point
			stim::vec<T> newP = VT[pie];

			//copy the point into the vector
			l[p] = newP;
		}

		return l;
	}

	/// Add an array of vertices to the vertex list
	unsigned int addV(std::vector< stim::vec<T> > vertices){

		unsigned int NV = vertices.size();			//get the total number of new vertices

		unsigned int currentV = V.size() + 1;			//store the index to the first submitted point
		
		//for each vertex
		for(unsigned int vi = 0; vi < NV; vi++){
			vertex v(vertices[vi]);
			V.push_back(v);
		}

		//return the index to the first point
		return currentV;

	}

	/// Add a line to the object
	void addLine(std::vector<unsigned> v, std::vector<unsigned> vt = std::vector<unsigned>(), std::vector<unsigned> vn = std::vector<unsigned>()){

		//create a new line geometry
		geometry new_line;

		unsigned int v_i, vt_i, vn_i;
		for(unsigned int i = 0; i < v.size(); i++){
			v_i = vt_i = vn_i = 0;

			v_i = v[i];
			if(vt.size() != 0)
				vt_i = vt[i];
			if(vn.size() != 0)
				vn_i = vn[i];

			new_line.push_back(triplet(v_i, vt_i, vn_i));
		}

		//push the new geometry to the line list
		L.push_back(new_line);
	}

	/// Fills three std::vector structures with the indices representing a line
	/// @param l is the line index
	/// @param vi is a vertex index array that will be filled
	void getLinei(unsigned l, std::vector<unsigned>& vi){
		L[l-1].get_v(vi);
	}

	/// Fills three std::vector structures with the indices representing a line
	/// @param l is the line index
	/// @param vi is a vertex index array that will be filled
	/// @param vti is a vertex texture coordinate index array that will be filled
	void getLinei(unsigned l, std::vector<unsigned>& vi, std::vector<unsigned>& vti){
		getLinei(l, vi);
		L[l-1].get_vt(vti);
	}

	/// Fills three std::vector structures with the indices representing a line
	/// @param l is the line index
	/// @param vi is a vertex index array that will be filled
	/// @param vti is a vertex texture coordinate index array that will be filled
	/// @param vni is a vertex normal index array that will be filled
	void getLinei(unsigned l, std::vector<unsigned>& vi, std::vector<unsigned>& vti, std::vector<unsigned>& vni){
		getLinei(l, vi, vti);
		L[l-1].get_vn(vni);
	}

	/// Returns a list of points corresponding to the vertices of a line
	void getLine(unsigned l, std::vector< stim::vec<T> >& v){

		std::vector<unsigned> vi;			//create a vector to store indices to vertices
		getLinei(l, vi);					//get the indices for the line vertices
		v = getV(vi);						//get the vertices corresponding to the indices
	}

	void getLine(unsigned l, std::vector< stim::vec<T> >& v, std::vector< stim::vec<T> >& vt){

		std::vector<unsigned> vi, vti;
		getLinei(l, vi, vti);					//get the indices for the line vertices
		v = getV(vi);						//get the vertices corresponding to the indices
		vt = getVT(vti);
	}

	void getLine(unsigned l, std::vector< stim::vec<T> >& v,
							 std::vector< stim::vec<T> >& vt,
							 std::vector< stim::vec<T> >& vn){

		std::vector<unsigned> vi, vti, vni;
		getLinei(l, vi, vti, vni);					//get the indices for the line vertices
		v = getV(vi);						//get the vertices corresponding to the indices
		vt = getVT(vti);
		vn = getVN(vni);

	}




};






};


#endif