network.h 48.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
#ifndef JACK_NETWORK_H
#define JACK_NETWORK_H

#include "centerline.h"
#include<stim/visualization/obj.h>
#include<stim/visualization/swc.h>
#include <stim/math/circle.h>
#include <stim/structures/kdtree.cuh>


// *****help function*****

template<typename T>
CUDA_CALLABLE T gaussian(T x, T std = 25.0f) {
	return exp(-x / (2.0f * std * std));
}

#ifdef __CUDACC__
template<typename T>
__global__ void find_metric(T* M, size_t n, T* D, T sigma) {
	size_t x = blockDim.x * blockIdx.x + threadIdx.x;
	if (x >= n) return;		// segfault
	M[x] = 1.0f - gaussian<T>(D[x], sigma);
}
#endif

namespace stim{

	template<typename T>
	class network {
	public:
		// define edge class that extends centerline class with radius information
		class edge : public stim::centerline<T> {
		protected:
			std::vector<T> R;	// radius at each point on current edge

		public:
			unsigned int v[2];		// unique idx for starting and ending point
			using stim::centerline<T>::d;
			using stim::centerline<T>::C;


			/// constructors
			// empty constructor
			edge() : stim::centerline<T>() {
				v[0] = UINT_MAX;		// set to default value, risky!
				v[1] = UINT_MAX;
			}

			// constructor that contructs an edge based on a centerline
			edge(stim::centerline<T> c) : stim::centerline<T>(c) {
				size_t num = c.size();
				R.resize(num);
			}

			// constructor that constructs an edge based on a centerline and a list of radii
			edge(stim::centerline<T> c, std::vector<T> r) : stim::centerline<T>(c) {
				R = r;			// copy radii
			}

			// constructor that constructs an edge based on a list of points and a list of radii
			edge(std::vector<stim::vec3<T> > c, std::vector<T> r) : stim::centerline<T>(c) {
				R = r;			// copy radii
			}


			/// basic operations
			// get radius
			T r(size_t idx) {
				return R[idx];
			}
			
			// set radius
			void set_r(T value) {
				size_t num = R.size();
				for (size_t i = 0; i < num; i++)
					R[i] = value;
			}
			void set_r(size_t idx, T value) {
				R[idx] = value;
			}
			void set_r(std::vector<T> value) {
				size_t num = value.size();
				for (size_t i = 0; i < num; i++)
					R[i] = value[i];
			}

			// push back a new radius
			void push_back_r(T value) {
				R.push_back(value);
			}


			/// vector operation
			// insert a new point and radius at specific location
			void insert(size_t idx, stim::vec3<T> p, T r) {
				centerline<T>::insert(idx, p);		// insert a new point on current centerline

				R.insert(R.begin() + idx, r);		// insert a new radius for that point
			}

			// reverse the order of an edge
			edge reverse() {
				centerline<T> new_centerline = (*this).centerline<T>::reverse();
				std::vector<T> new_radius = R;
				std::reverse(new_radius.begin(), new_radius.end());

				edge result(new_centerline, new_radius);

				return result;
			}

			// copy edge to array
			void edge_to_array(T* a) {
				edge b = (*this);
				size_t n = b.size();
				for (size_t i = 0; i < n; i++) {
					a[i * 3 + 0] = b[i][0];
					a[i * 3 + 1] = b[i][1];
					a[i * 3 + 2] = b[i][2];
				}
			}


			/// arithmetic operations
			// '+' operation
			edge operator+(edge e) const {
				edge result(*this);
				size_t num = e.size();
				for (size_t i = 0; i < num; i++) {
					result.push_back(e[i]);
					result.push_back_r(e.R[i]);
				}

				return result;
			}
			

			/// advanced operations
			// concatenate two edges from specific point, The deference between function "+" and "concatenate" is that this requires that new edges should share a joint point
			edge concatenate(edge e2, size_t p1, size_t p2) {
				edge e1 = *this;
				size_t num1 = e1.size();		// get the number of points
				size_t num2 = e2.size();
				centerline<T> new_centerline;
				std::vector<T> new_radius;

				// four situations
				if (p1 == 0) {
					if (p2 == 0) 
						e2 = e2.reverse();
					for (size_t i = 0; i < num2 - 1; i++) {
						new_centerline.push_back(e2[i]);
						new_radius.push_back(e2.R[i]);
					}
					for (size_t i = 0; i < num1; i++) {
						new_centerline.push_back(e1[i]);
						new_radius.push_back(e1.R[i]);
					}
				}
				else {
					if (p2 != 0)
						e2 = e2.reverse();
					for (size_t i = 0; i < num1 - 1; i++) {
						new_centerline.push_back(e1[i]);
						new_radius.push_back(e1.R[i]);
					}
					for (size_t i = 0; i < num2; i++) {
						new_centerline.push_back(e2[i]);
						new_radius.push_back(e2.R[i]);
					}
				}

				edge result(new_centerline, new_radius);

				return result;
			}

			// split current edge at specific position
			std::vector<edge> split(size_t idx) {

				// can't update v!!!
				std::vector<centerline<T> > tmp;
				tmp = (*this).centerline<T>::split(idx);			// split current edge in terms of centerline
				size_t num = tmp.size();
				std::vector<edge> result(num);						// construct a list of edges
				for (size_t i = 0; i < num; i++) {
					edge new_edge(tmp[i]);							// construct new edge based on one centerline
					result[i] = new_edge;
				}
		
				for (size_t i = 0; i < num; i++) {					// for every edge
					for (size_t j = 0; j < result[i].size(); j++) {	// for every point on that edge
						result[i].R[j] = R[j + i * idx];			// update radius information
					}
				}

				return result;
			}

			// resample current edge
			edge resample(T spacing) {
				edge result(centerline<T>::resample(spacing));		// resample current edge and output as a new edge
				result.v[0] = v[0];									// updates unique indices
				result.v[1] = v[1];

				return result;
			}

			// compute a circle that represent the shape of cylinder cross section at point idx, (TGC -> truncated generalized cones)
			stim::circle<T> circ(size_t idx) {
				
				stim::circle<T> c;			// create a circle to orient for finding the circle plane at point idx
				c.rotate(d(idx));			// rotate the circle
				stim::vec3<T> U = c.U;		// copy the frenet frame vector

				return stim::circle<T>(C[idx], R[idx], d(idx), U);
			}

			/// output operation
			// output the edge information as a string
			std::string str() {
				std::stringstream ss;
				ss << "(" << centerline<T>::size() << ")\tl = " << this->length() << "\t" << v[0] << "----" << v[1];
				return ss.str();
			}

			/// operator for writing the edge information into a binary .nwt file.
			friend std::ofstream& operator<<(std::ofstream& out, edge& e) {
				out.write(reinterpret_cast<const char*>(&e.v[0]), sizeof(unsigned int));	// write the starting point.
				out.write(reinterpret_cast<const char*>(&e.v[1]), sizeof(unsigned int));	// write the ending point.
				size_t sz = e.size();				// write the number of point in the edge.
				out.write(reinterpret_cast<const char*>(&sz), sizeof(unsigned int));
				for (size_t i = 0; i < sz; i++) {	// write each point
					stim::vec3<T> point = e[i];
					out.write(reinterpret_cast<const char*>(&point[0]), 3 * sizeof(T));
					out.write(reinterpret_cast<const char*>(&e.R[i]), sizeof(T));			// write the radius
				}
				return out;	// return stream
			}

			/// operator for reading an edge from a binary .nwt file.
			friend std::ifstream& operator>>(std::ifstream& in, edge& e) {
				unsigned int v0, v1, sz;
				in.read(reinterpret_cast<char*>(&v0), sizeof(unsigned int));	// read the staring point.
				in.read(reinterpret_cast<char*>(&v1), sizeof(unsigned int));	// read the ending point
				in.read(reinterpret_cast<char*>(&sz), sizeof(unsigned int));	// read the number of points in the edge

				std::vector<stim::vec3<T> > p(sz);
				std::vector<T> r(sz);
				for (size_t i = 0; i < sz; i++) {	// set the points and radii to the newly read values
					stim::vec3<T> point;
					in.read(reinterpret_cast<char*>(&point[0]), 3 * sizeof(T));
					p[i] = point;
					T mag;
					in.read(reinterpret_cast<char*>(&mag), sizeof(T));
					r[i] = mag;
				}
				e = edge(p, r);
				e.v[0] = v0; e.v[1] = v1;
				return in;
			}
		};

		// define vertex class that extends vec3 class with connectivity information
		class vertex : public stim::vec3<T> {
		public:
			std::vector<unsigned int> e[2];	// incoming and outgoing edges of that vertex
			using stim::vec3<T>::ptr;

			/// constructors
			// empty constructor
			vertex() : stim::vec3<T>() {
			}

			// constructor that constructs a vertex based on a vec3 vector
			vertex(stim::vec3<T> v) : stim::vec3<T>(v) {
			}

			stim::vec3<T>
			getPosition()
			{
				return stim::vec3<T>(ptr[0], ptr[1], ptr[2]);
			}

			/// output operation
			// output the vertex information as a string
			std::string str() {
				std::stringstream ss;
				ss << "\t(x, y, z) = " << stim::vec3<T>::str();

				if (e[0].size() > 0) {
					ss << "\t> ";
					for (size_t i = 0; i < e[0].size(); i++)
						ss << e[0][i] << " ";
				}
				if (e[1].size() > 0) {
					ss << "\t< ";
					for (size_t i = 0; i < e[1].size(); i++)
						ss << e[1][i] << " ";
				}
			
				return ss.str();
			}

			/// operator for writing the vector into the stream;
			friend std::ofstream& operator<<(std::ofstream& out, const vertex& v) {
				unsigned int s0, s1;
				s0 = v.e[0].size();
				s1 = v.e[1].size();
				out.write(reinterpret_cast<const char*>(&v.ptr[0]), 3 * sizeof(T));		// write physical vertex location
				out.write(reinterpret_cast<const char*>(&s0), sizeof(unsigned int));			// write the number of "outgoing edges"
				out.write(reinterpret_cast<const char*>(&s1), sizeof(unsigned int));			// write the number of "incoming edges"	
				if (s0 != 0)
					out.write(reinterpret_cast<const char*>(&v.e[0][0]), sizeof(unsigned int)*v.e[0].size());	// write the "outgoing edges"
				if (s1 != 0)
					out.write(reinterpret_cast<const char*>(&v.e[1][0]), sizeof(unsigned int)*v.e[1].size());	// write the "incoming edges"
				return out;
			}

			/// operator for reading the vector out of the stream;
			friend std::ifstream& operator >> (std::ifstream& in, vertex& v) {
				in.read(reinterpret_cast<char*>(&v[0]), 3 * sizeof(T));				// read the physical position
				unsigned int s[2];
				in.read(reinterpret_cast<char*>(&s[0]), 2 * sizeof(unsigned int));	// read the sizes of incoming and outgoing edge arrays

				std::vector<unsigned int> one(s[0]);
				std::vector<unsigned int> two(s[1]);
				v.e[0] = one;
				v.e[1] = two;
				if (one.size() != 0)
					in.read(reinterpret_cast<char*>(&v.e[0][0]), s[0] * sizeof(unsigned int));		// read the arrays of "outgoing edges"
				if (two.size() != 0)
					in.read(reinterpret_cast<char*>(&v.e[1][0]), s[1] * sizeof(unsigned int));		// read the arrays of "incoming edges"
				return in;
			}
		};

	public:

		std::vector<edge> E;	// list of edges
		std::vector<vertex> V;	// list of vertices

		/// constructors
		// empty constructor
		network() {
		}

		// constructor with a file to load
		network(std::string fileLocation) {
			load_obj(fileLocation);
		}

		// constructor that constructs a network based on lists of vertices and edges
		network(std::vector<edge> nE, std::vector<vertex> nV) {
			E = nE;
			V = nV;
		}


		/// basic operations
		// get the number of edges
		size_t edges() {
			return E.size();
		}

		// get the number of vertices
		size_t vertices() {
			return V.size();
		}

		// get the radius at specific point
		T r(size_t f, size_t p) {		// edge f, point p
			return E[f].r(p);
		}
		T r(size_t c) {					// vertex c
			T result;
			if (V[c].e[0].size()) {				// if this vertex has outgoing edges
				size_t f = V[c].e[0][0];		// get the index of first outgoing edge of this vertex
				result = r(f, 0);				// this vertex should be the starting point of that edge
			}
			else {								// if this vertex only has incoming edges
				size_t f = V[c].e[1][0];		// get the index of first incoming edge of this vertex
				result = r(f, E[f].size() - 1);	// this vertex should be the ending point of that edge
			}

			return result;
		}

		// get the average radius of one specific edge
		T ar(size_t f) {
			T result = 0.0f;
			size_t num = E[f].size();
			for (size_t i = 0; i < num; i++)
				result += E[f].R[i];
			result = result / num;

			return result;
		}

		// get the length of edge "f"
		T length(size_t f) {
			return E[f].length();
		}

		// copy specific edge
		edge get_edge(size_t f) {
			return E[f];
		}

		// copy specific vertex
		vertex get_vertex(size_t c) {
			return V[c];
		}

		// get boundary/pendant vertices
		std::vector<size_t> pendant() {
			std::vector<size_t> result;

			for (size_t i = 0; i < V.size(); i++)
				if (V[i].e[0].size() + V[i].e[1].size() == 1)
					result.push_back(i);
			
			return result;
		}

		// set radius for specific point on edge "f"
		void set_r(size_t f, size_t p, T value) {
			E[f].set_r(p, value);
		}
		void set_r(size_t f, T value) {
			E[f].set_r(value);
		}
		void set_r(size_t f, std::vector<T> value) {
			E[f].set_r(value);
		}

		// copy all points (coordinates) to 1D array
		void copy_to_array(T* dst) {
			size_t t = 0;								// indicator for points
			for (size_t i = 0; i < E.size(); i++) {
				for (size_t j = 0; j < E[i].size(); j++) {
					for (size_t k = 0; k < 3; k++) {
						dst[t * 3 + k] = E[i][j][k];
					}
					t++;			// next point
				}
			}
		}

		// get an average of branching index in the network
		T BranchingIndex() {
			T B = 0.0f;
			size_t num = V.size();
			for (size_t i = 0; i < num; i++)
				B += (T)(V[i].e[0].size() + V[i].e[1].size());

			B = B / (T)num;

			return B;
		}

		// get the number of branching points in the network
		size_t BranchP() {
			size_t B = 0;
			size_t c;
			size_t num = V.size();
			for (size_t i = 0; i < num; i++) {
				c = (V[i].e[0].size() + V[i].e[1].size());
				if (c > 2)
					B += 1;
			}

			return B;
		}

		// get the number of starting or ending points in the network
		size_t EndP() {
			size_t B = 0;
			size_t c;
			size_t num = V.size();
			for (size_t i = 0; i < num; i++) {
				c = (V[i].e[0].size() + V[i].e[1].size());
				if (c == 1)
					B += 1;
			}

			return B;
		}

		// get an average of fiber length in the network
		T Lengths() {
			std::vector<T> L;
			T sumLength = 0.0f;
			size_t num = E.size();
			for (size_t i = 0; i < num; i++) {
				L.push_back(E[i].length());
				sumLength += E(i).length();
			}
			T avg = sumLength / (T)num;
			
			return avg;
		}

		// get the total number of points in the network
		size_t total_points() {
			size_t n = 0;
			size_t num = E.size();
			for (size_t i = 0; i < num; i++)
				n += num;

			return n;
		}

		// get an average of tortuosities in the network
		T Tortuosities() {
			std::vector<T> t;
			std::vector<T> id1, id2;
			T distance;
			T tortuosity;
			T sumTortuosity = 0.0f;
			size_t num = E.size();
			for (size_t i = 0; i < num; i++) {
				id1 = E[i][0];						// get the starting point
				id2 = E[i][num - 1];				// get the ending point
				distance = (id1 - id2).len();
				if (distance > 0)
					tortuosity = E[i].length() / distance;	// tortuosity = edge length / edge displacement
				else
					tortuosity = 0.0f;
				t.push_back(tortuosity);
				sumTortuosity += tortuosity;
			}
			T avg = sumTortuosity / (T)num;

			return avg;
		}

		// get an average contraction of the network
		T Contraction() {
			std::vector<T> t;
			std::vector<T> id1, id2;							// starting and ending vertices of the edge
			T distance;
			T contraction;
			T sumContraction = 0.0f;
			size_t num = E.size();
			for (size_t i = 0; i < num; i++) {					// for each edge in the network
				id1 = E[i][0];									// get the edge starting point
				id2 = E[i][num - 1];							// get the edge ending point
				distance = (id1 - id2).len();                   // displacement between the starting and ending points
				contraction = distance / E[i].length();			// contraction = edge displacement / edge length
				t.push_back(contraction);
				sumContraction += contraction;
			}
			T avg = sumContraction / (T)num;

			return avg;
		}

		// get an average fractal dimension of the branches of the network
		T FractalDimensions() {
			std::vector<T> t;
			std::vector<T> id1, id2;							// starting and ending vertices of the edge
			T distance;
			T fract;
			T sumFractDim = 0.0f;
			size_t num = E.size();
			for (size_t i = 0; i < num; i++) {							// for each edge in the network
				id1 = E[i][0];											// get the edge starting point
				id2 = E[i][num - 1];									// get the edge ending point
				distance = (id1 - id2).len();							// displacement between the starting and ending points
				fract = std::log(distance) / std::log(E[i].length());	// fractal dimension = log(edge displacement) / log(edge length)
				t.push_back(sumFractDim);
				sumFractDim += fract;
			}
			T avg = sumFractDim / (T)num;
			
			return avg;
		}

		
		/// construct network from files
		// load network from OBJ files
		void load_obj(std::string filename) {
			stim::obj<T> O;				// create OBJ object
			O.load(filename);			// load OBJ file to an object

			size_t ii[2];				// starting/ending point index of one centerline/edge
			std::vector<size_t> index;	// added vertex index
			std::vector<size_t>::iterator it;	// iterator for searching
			size_t pos;					// position of added vertex

			// get the points
			for (size_t l = 1; l <= O.numL(); l++) {	// for every line of points
				std::vector<stim::vec<T> > tmp;			// temp centerline
				O.getLine(l, tmp);						// get points
				size_t n = tmp.size();
				std::vector<stim::vec3<T> > c(n);
				for (size_t i = 0; i < n; i++) {		// switch from vec to vec3
					for (size_t j = 0; j < 3; j++) {
						c[i][j] = tmp[i][j];
					}
				}

				centerline<T> C(c);				// construct centerline
				edge new_edge(C);				// construct edge without radii

				std::vector<unsigned> id;		// temp point index
				O.getLinei(l, id);				// get point index
				
				ii[0] = (size_t)id.front();
				ii[1] = (size_t)id.back();

				size_t num = new_edge.size();	// get the number of point on current edge

				// for starting point
				it = std::find(index.begin(), index.end(), ii[0]);
				if (it == index.end()) {		// new vertex
					vertex new_vertex = new_edge[0];
					new_vertex.e[0].push_back(E.size());	// push back the outgoing edge index
					new_edge.v[0] = V.size();				// save the starting vertex index
					V.push_back(new_vertex);
					index.push_back(ii[0]);					// save the point index
				}
				else {							// already added vertex
					pos = std::distance(index.begin(), it);	// find the added vertex position
					V[pos].e[0].push_back(E.size());		// push back the outgoing edge index
					new_edge.v[0] = pos;
				}

				// for ending point
				it = std::find(index.begin(), index.end(), ii[1]);
				if (it == index.end()) {		// new vertex
					vertex new_vertex = new_edge[num - 1];
					new_vertex.e[1].push_back(E.size());	// push back the incoming edge index
					new_edge.v[1] = V.size();				// save the ending vertex index
					V.push_back(new_vertex);
					index.push_back(ii[1]);					// save the point index
				}
				else {							// already added vertex
					pos = std::distance(index.begin(), it);	// find the added vertex position
					V[pos].e[1].push_back(E.size());		// push back the incoming edge index
					new_edge.v[1] = pos;
				}

				E.push_back(new_edge);
			}

			// get the radii
			if (O.numVT()) {		// copy radii information if provided
				std::vector<unsigned> id;		// a list stores the indices of points
				for (size_t i = 1; i <= O.numL(); i++) {
					id.clear();		// clear up temp for current round computation
					O.getLinei(i, id);
					size_t num = id.size();	// get the number of points
					T radius;
					for (size_t j = 0; j < num; j++) {
						radius = O.getVT(id[j] - 1)[0] / 2;		// hard-coded: radius = diameter / 2
						set_r(i - 1, j, radius);				// copy the radius
					}
				}
			}
		}

		// load network from SWC files (neuron)
		void load_swc(std::string filename) {
			stim::swc<T> S;				// create a SWC object
			S.load(filename);			// load data from SWC file to an object
			S.create_tree();			// link nodes according to connectivity as a tree
			S.resample();

			size_t i[2];				// starting/ending point index of one centerline/edge
			std::vector<size_t> index;	// added vertex index
			std::vector<size_t>::iterator it;	// iterator for searching
			size_t pos;					// position of added vertex

			for (size_t l = 0; l < S.numE; l++) {
				std::vector<stim::vec<T> > c;	// temp centerline
				S.get_points(l, c);

				centerline<T> C(c);				// construct centerline

				std::vector<T> radius;
				S.get_radius(l, radius);		// get radius

				edge new_edge(C, radius);		// construct edge
				size_t num = new_edge.size();	// get the number of point on current edge

				i[0] = S.E[l].front();
				i[1] = S.E[l].back();

				// for starting point
				it = std::find(index.begin(), index.end(), i[0]);
				if (it == index.end()) {		// new vertex
					vertex new_vertex = new_edge[0];
					new_vertex.e[0].push_back(E.size());	// push back the outgoing edge index
					new_edge.v[0] = V.size();				// save the starting vertex index
					V.push_back(new_vertex);
					index.push_back(i[0]);					// save the point index
				}
				else {							// already added vertex
					pos = std::distance(index.begin(), it);	// find the added vertex position
					V[pos].e[0].push_back(E.size());		// push back the outgoing edge index
					new_edge.v[0] = pos;
				}

				// for ending point
				it = std::find(index.begin(), index.end(), i[1]);
				if (it == index.end()) {		// new vertex
					vertex new_vertex = new_edge[num - 1];
					new_vertex.e[1].push_back(E.size());	// push back the incoming edge index
					new_edge.v[1] = V.size();				// save the ending vertex index
					V.push_back(new_vertex);
					index.push_back(i[1]);					// save the point index
				}
				else {							// already added vertex
					pos = std::distance(index.begin(), it);	// find the added vertex position
					V[pos].e[1].push_back(E.size());		// push back the incoming edge index
					new_edge.v[1] = pos;
				}

				E.push_back(new_edge);
			}
		}

/*
		// load a network in text file to a network class
		void load_txt(std::string filename) {
			std::vector <std::string> file_contents;
			std::ifstream file(filename.c_str());
			std::string line;
			std::vector<size_t> id2vert;	// this list stores the vertex ID associated with each network vertex
											// for each line in the text file, store them as strings in file_contents
			while (std::getline(file, line)) {
				std::stringstream ss(line);
				file_contents.push_back(ss.str());
			}
			size_t numEdges = atoi(file_contents[0].c_str());	// number of edges in the network
			size_t I = atoi(file_contents[1].c_str());			// calculate the number of points3d on the first edge
			size_t count = 1; size_t k = 2;						// count is global counter through the file contents, k is for the vertices on the edges

			for (size_t i = 0; i < numEdges; i++) {
				// pre allocate a position vector p with number of points3d on the edge p
				std::vector<stim::vec<T> > p(0, I);
				// for each point on the nth edge
				for (size_t j = k; j < I + k; j++) {
					// split the points3d of floats with separator space and form a float3 position vector out of them
					p.push_back(std::split(file_contents[j], ' '));
				}
				count += p.size() + 1;	// increment count to point at the next edge in the network
				I = atoi(file_contents[count].c_str()); // read in the points3d at the next edge and convert it to an integer
				k = count + 1;
				edge new_edge = p;		// create an edge with a vector of points3d  on the edge
				E.push_back(new_edge);	// push the edge into the network
			}
			size_t numVertices = atoi(file_contents[count].c_str()); // this line in the text file gives the number of distinct vertices
			count = count + 1;			// this line of text file gives the first verrtex
	
			for (size_t i = 0; i < numVertices; i++) {
				vertex new_vertex = std::split(file_contents[count], ' ');
				V.push_back(new_vertex);
				count += atoi(file_contents[count + 1].c_str()) + 2; // Skip number of edge ids + 2 to point to the next vertex
			}
		}
*/
		// load network from NWT files
		void load_nwt(std::string filename) {
			int dims[2];						// number of vertex, number of edges
			read_nwt_header(filename, &dims[0]);		// read header
			std::ifstream file;
			file.open(filename.c_str(), std::ios::in | std::ios::binary);		// skip header information.
			file.seekg(14 + 58 + 4 + 4, file.beg);
			vertex v;
			for (int i = 0; i < dims[0]; i++) {	// for every vertex, read vertex, add to network.
				file >> v;
				std::cerr << v.str() << std::endl;
				V.push_back(v);
			}

			std::cout << std::endl;
			for (int i = 0; i < dims[1]; i++) {	// for every edge, read edge, add to network.
				edge e;
				file >> e;
				std::cerr << e.str() << std::endl;
				E.push_back(e);
			}
			file.close();
		}

		// save network to NWT files
		void save_nwt(std::string filename) {
			write_nwt_header(filename);
			std::ofstream file;
			file.open(filename.c_str(), std::ios::out | std::ios::binary | std::ios::app);	///since we have written the header we are not appending.
			for (int i = 0; i < V.size(); i++) {	// look through the Vertices and write each one.
				file << V[i];
			}
			for (int i = 0; i < E.size(); i++) {	// loop through the Edges and write each one.
				file << E[i];
			}
			file.close();
		}

		/// NWT format functions
		void read_nwt_header(std::string filename, int *dims) {
			char magicString[14];		// id
			char desc[58];				// description
			int hNumVertices;			// #vert
			int hNumEdges;				// #edges
			std::ifstream file;			// create stream
			file.open(filename.c_str(), std::ios::in | std::ios::binary);
			file.read(reinterpret_cast<char*>(&magicString[0]), 14);		// read the file id.
			file.read(reinterpret_cast<char*>(&desc[0]), 58);				// read the description
			file.read(reinterpret_cast<char*>(&hNumVertices), sizeof(int));	// read the number of vertices
			file.read(reinterpret_cast<char*>(&hNumEdges), sizeof(int));	// read the number of edges
			file.close();								// close the file.
			dims[0] = hNumVertices;						// fill the returned reference.
			dims[1] = hNumEdges;
		}
		void write_nwt_header(std::string filename) {
			std::string magicString = "nwtFileFormat ";				// identifier for the file.
			std::string desc = "fileid(14B), desc(58B), #vertices(4B), #edges(4B): bindata";
			int hNumVertices = V.size();							// int byte header storing the number of vertices in the file
			int hNumEdges = E.size();								// int byte header storing the number of edges.
			std::ofstream file;
			file.open(filename.c_str(), std::ios::out | std::ios::binary);
			std::cout << hNumVertices << " " << hNumEdges << std::endl;
			file.write(reinterpret_cast<const char*>(&magicString.c_str()[0]), 14);	// write the file id
			file.write(reinterpret_cast<const char*>(&desc.c_str()[0]), 58);		// write the description
			file.write(reinterpret_cast<const char*>(&hNumVertices), sizeof(int));	// write #vert.
			file.write(reinterpret_cast<const char*>(&hNumEdges), sizeof(int));		// write #edges
			file.close();
		}

		// output the network as a string
		std::string str() {
			std::stringstream ss;
			size_t nv = V.size();
			size_t ne = E.size();
			ss << "Node (" << nv << ")--------" << std::endl;
			for (size_t i = 0; i < nv; i++)
				ss << "\t" << i << V[i].str() << std::endl;
			ss << "Edge (" << ne << ")--------" << std::endl;
			for (size_t i = 0; i < ne; i++)
				ss << "\t" << i << E[i].str() << std::endl;
		
			return ss.str();
		}

		// get a string of edges
		std::string strTxt(std::vector<std::vector<T> > p) {
			std::stringstream ss;
			std::stringstream oss;
			size_t num = p.size();
			for (size_t i = 0; i < p; i++) {
				ss.str(std::string());
				for (size_t j = 0; j < 3; j++)
					ss << p[i][j];
				ss << "\n";
			}

			return ss.str();
		}

		// removes specified character from string
		void removeCharsFromString(std::string &str, char* charsToRemove) {
			for (size_t i = 0; i < strlen(charsToRemove); i++)
				str.erase((remove(str.begin(), str.end(), charsToRemove[i])), str.end());
		}

		// exports network to txt file
		void to_txt(std::string filename) {
			std::ofstream ofs(filename.c_str(), std::ofstream::out | std::ofstream::app);

			ofs << (E.size()).str() << "\n";
			for (size_t i = 0; i < E.size(); i++) {
				std::string str;
				ofs << (E[i].size()).str() << "\n";
				str = E[i].strTxt();
				ofs << str << "\n";
			}
			for (size_t i = 0; i < V.size(); i++) {
				std::string str;
				str = V[i].str();
				char temp[4] = "[],";
				removeCharsFromString(str, temp);
				ofs << str << "\n";
			}
			ofs.close();
		}


		/// advanced operations
		// adding a fiber to current network
		// prior information: attaching fiber "f" and point "p" information, if "order" = 0 means the first point on fiber "e" is the attaching one (others mean the last point)
		// "add" = 0 means replace the point on fiber "e" which is to be attached to the point on current fiber, "add" = 1 means add that one. Default "add" = 0
		// ********** we don't accept that one fiber has only 3 points on it, reorder if this happens **********
		void add_fiber(edge e, size_t f, size_t p, size_t order, size_t add = 0) {
			size_t num = E[f].size();		// get the number of points on this fiber
			size_t num1 = p + 1;			// first "half"
			size_t num2 = num - p;			// second "half"
			size_t id = p;					// split point on the fiber that attach to
			size_t ne = e.size();

			// if a new fiber only has points that less than 4, either add or change (default) an attaching point
			if (num1 < 4)
				id = 0;
			else if (num2 < 4)
				id = num - 1;
			
			// check to see whether it needs to replace/add the joint point
			if (add == 0) {				// change the point
				if (order == 0) {
					e[0] = E[f][id];
					e.set_r(0, r(f, id));
				}
				else {
					e[ne - 1] = E[f][id];
					e.set_r(ne - 1, r(f, id));
				}
			}
			else {						// add a point if necessary
				if (order == 0) {
					if (e[0] == E[f][id])	// if they share the same joint point, make sure radii are consistent
						e.set_r(0, r(f, id));
					else
						e.insert(0, E[f][id], r(f, id));
				}
				else {
					if (e[ne - 1] == E[f][id])
						e.set_r(ne - 1, r(f, id));
					else
						e.insert(ne - 1, E[f][id], r(f, id));
				}
			}

			std::vector<edge> tmp_edge = E[f].split(id);			// check and split
			// current one hasn't been splitted
			if (tmp_edge.size() == 1) {
				if (id == 0) {		// stitch location is the starting point of current edge
					if (V[E[f].v[0]].e[0].size() + V[E[f].v[0]].e[1].size() > 1) {	// branching point
						if (order == 0) {
							V[E[f].v[0]].e[0].push_back(E.size());
							edge new_edge(e);
							new_edge.v[0] = E[f].v[0];	// set the starting and ending points for the new edge
							new_edge.v[1] = V.size();
							E.push_back(new_edge);
							vertex new_vertex = e[e.size() - 1];
							new_vertex.e[1].push_back(V.size());	// set the incoming edge for the new point
							V.push_back(new_vertex);
						}
						else {
							V[E[f].v[0]].e[1].push_back(E.size());
							edge new_edge(e);
							new_edge.v[0] = V.size();	// set the starting and ending points for the new edge
							new_edge.v[1] = E[f].v[0];
							E.push_back(new_edge);
							vertex new_vertex = e[e.size() - 1];
							new_vertex.e[0].push_back(V.size());	// set the outgoing edge for the new point
							V.push_back(new_vertex);
						}
					}
					else {								// not branching point
						size_t k = E[f].v[0];			// get the index of the starting point on current edge
						vertex new_vertex;
						edge new_edge;
						if (order == 0) {
							new_vertex = e[e.size() - 1];
							new_edge = E[f].concatenate(e, 0, 0);
						}
						else {
							new_vertex = e[0];
							new_edge = E[f].concatenate(e, 0, e.size() - 1);
						}
						new_vertex.e[0].push_back(f);
						new_edge.v[1] = E[f].v[1];		// set starting and ending points for the new concatenated edge
						new_edge.v[0] = E[f].v[0];
						V[k] = new_vertex;
						E[f] = new_edge;
					}
				}
				else {			// stitch location is the ending point of current edge
					if (V[E[f].v[1]].e[0].size() + V[E[f].v[1]].e[1].size() > 1) {	// branching point
						if (order == 0) {
							V[E[f].v[1]].e[0].push_back(E.size());
							edge new_edge(e);
							new_edge.v[0] = E[f].v[1];	// set the starting and ending points for the new edge
							new_edge.v[1] = V.size();
							E.push_back(new_edge);
							vertex new_vertex = e[e.size() - 1];
							new_vertex.e[1].push_back(V.size());	// set the incoming edge for the new point
							V.push_back(new_vertex);
						}
						else {
							V[E[f].v[1]].e[1].push_back(E.size());
							edge new_edge(e);
							new_edge.v[0] = V.size();	// set the starting and ending points for the new edge
							new_edge.v[1] = E[f].v[1];
							E.push_back(new_edge);
							vertex new_vertex = e[e.size() - 1];
							new_vertex.e[0].push_back(V.size());	// set the outgoing edge for the new point
							V.push_back(new_vertex);
						}
					}
					else {								// not branching point
						size_t k = E[f].v[1];			// get the index of the ending point on current edge
						vertex new_vertex;
						edge new_edge;
						if (order == 0) {
							new_vertex = e[e.size() - 1];
							new_edge = E[f].concatenate(e, num - 1, 0);
						}
						else {
							new_vertex = e[0];
							new_edge = E[f].concatenate(e, num - 1, e.size() - 1);
						}
						new_vertex.e[1].push_back(f);
						new_edge.v[1] = E[f].v[1];	// set starting and ending points for the new concatenated edge
						new_edge.v[0] = E[f].v[0];
						V[k] = new_vertex;
						E[f] = new_edge;
					}
				}
			}
			// current one has been splitted
			else {
				vertex new_vertex = E[f][id];
				V.push_back(new_vertex);
				tmp_edge[0].v[0] = E[f].v[0];
				tmp_edge[0].v[1] = V.size() - 1;		// set the ending point of the first half edge
				tmp_edge[1].v[0] = V.size() - 1;		// set the starting point of the second half edge
				tmp_edge[1].v[1] = E[f].v[1];
				edge tmp(E[f]);
				E[f] = tmp_edge[0];						// replace current edge by the first half edge
				E.push_back(tmp_edge[1]);
				V[V.size() - 1].e[0].push_back(E.size() - 1);			// set the incoming and outgoing edges for the splitted point
				V[V.size() - 1].e[1].push_back(f);						// push "f" fiber as an incoming edge for the splitted point
				for (size_t i = 0; i < V[tmp.v[1]].e[1].size(); i++)	// set the incoming edge for the original ending vertex
					if (V[tmp.v[1]].e[1][i] == f)
						V[tmp.v[1]].e[1][i] = E.size() - 1;

				if (order == 0) {
					e.v[0] = V.size() - 1;				// set the starting and ending points for the new edge
					e.v[1] = V.size();
					V[V.size() - 1].e[0].push_back(E.size());	// we assume "flow" flows from starting point to ending point!
					new_vertex = e[e.size() - 1];		// get the ending point on the new edge
					E.push_back(e);
					V.push_back(new_vertex);
					V[V.size() - 1].e[1].push_back(E.size() - 1);
				}
				else {
					e.v[0] = V.size();					// set the starting and ending points for the new edge
					e.v[1] = V.size() - 1;
					V[V.size() - 1].e[1].push_back(E.size());
					new_vertex = e[0];					// get the ending point on the new edge
					E.push_back(e);
					V.push_back(new_vertex);
					V[V.size() - 1].e[0].push_back(E.size() - 1);
				}
			}
		}

		// THIS IS FOR PAVEL
		// @param "e" is the edge that is to be stitched
		// @param "f" is the index of edge that is to be stiched to
		void stitch(edge e, size_t f) {
			network<T> A = (*this);			// make a copy of current network

			T* query_point = new T[3];
			for (size_t k = 0; k < 3; k++)
				query_point[k] = e[0][k];			// we assume the first one is the one to be stitched

			size_t num = A.E[f].size();		// get the number of points on edge "f"
			T* reference_point = (T*)malloc(sizeof(T) * num * 3);
			A.E[f].edge_to_array(reference_point);
			size_t max_tree_level = 3;

			stim::kdtree<T, 3> kdt;					// initialize a tree
			kdt.create(reference_point, num, max_tree_level);		// build a tree
			
			T* dist = new T[1];
			size_t* nnIdx = new size_t[1];

#ifdef __CUDACC__
			kdt.search(query_point, 1, nnIdx, dist);	// search for nearest neighbor
#else
			kdt.cpu_search(query_point, 1, nnIdx, dist);// search for nearest neighbor
#endif
			add_fiber(e, f, nnIdx[0], 0, 1);

			free(reference_point);
			delete(dist);
			delete(nnIdx);
		}
		
		// split current network at "idx" location on edge "f"
		network<T> split(size_t f, size_t idx) {
			size_t num = E.size();

			if (f >= num) {				// outside vector size
			}
			else {
				if (idx <= 0 || idx >= num - 1) {	// can't split at this position
				}
				else {
					std::vector<edge> list;			// a list of edges
					list = E[f].split(idx);			// split in tems of edges
					// first segment replaces original one
					edge new_edge = list[0];		// new edge
					edge tmp(E[f]);					// temp edge
					new_edge.v[0] = E[f].v[0];		// copy starting point
					new_edge.v[1] = V.size();		// set ending point
					E[f] = new_edge;				// replacement
					vertex new_vertex(new_edge[idx]);
					new_vertex.e[1].push_back(f);			// incoming edge for the new vertex
					new_vertex.e[0].push_back(E.size());	// outgoing edge for the new vertex

					// second segment gets newly push back
					new_edge = list[1];				// new edge
					new_edge.v[1] = tmp.v[1];		// copy ending point
					new_edge.v[0] = V.size();		// set starting point
					size_t n = V[tmp.v[1]].e[1].size();
					for (size_t i = 0; i < n; i++) {
						if (V[tmp.v[1]].e[1][i] == f) {
							V[tmp.v[1]].e[1][i] = E.size();
							break;
						}
					}
					
					V.push_back(new_vertex);
					E.push_back(new_edge);
				}
			}
			
			return (*this);
		}

		// resample current network
		network<T> resample(T spacing) {
			stim::network<T> result;

			result.V = V;	// copy vertices
			size_t num = E.size();	// get the number of edges
			result.E.resize(num);

			for (size_t i = 0; i < num; i++)
				result.E[i] = E[i].resample(spacing);

			return result;
		}

		// copy the point cload representing the centerline for the network into an array
		void centerline_cloud(T* dst) {
			size_t p;				// store the current edge point
			size_t P;				// store the number of points in an edge
			size_t t = 0;			// index in to the output array of points
			size_t num = E.size();
			for (size_t i = 0; i < num; i++) {
				P = E[i].size();
				for (p = 0; p < P; p++) {
					dst[t * 3 + 0] = E[i][p][0];
					dst[t * 3 + 1] = E[i][p][1];
					dst[t * 3 + 2] = E[i][p][2];
					t++;
				}
			}
		}

		// subdivide current network and represent as a explicit undirected graph
		network<T> to_graph() {
			std::vector<size_t> OI;			// a list of original vertex index
			std::vector<size_t> NI;			// a list of new vertex index
			std::vector<edge> nE;			// a list of new edge
			std::vector<vertex> nV;			// a list of new vector
			size_t id = 0;					// temp vertex index
			size_t n = E.size();

			for (size_t i = 0; i < n; i++) {
				if (E[i].size() == 2) {		// if current edge only contain 2 points, can't be subdivided
					stim::centerline<T> line;
					for (size_t k = 0; k < 2; k++)		// copy points on current network
						line.push_back(E[i][k]);

					edge new_edge(line);	// construct edge based on current centerline

					for (size_t k = 0; k < 2; k++) {
						vertex new_vertex = new_edge[k];
						id = E[i].v[k];			// get the starting/ending point index
						std::vector<size_t>::iterator pos = std::find(OI.begin(), OI.end(), id);		// search this index through the list of new vertex index and see whether it appears
						if (pos == OI.end()) {			// current vertex hasn't been pushed back
							OI.push_back(id);			// add current vertex to the original list
							NI.push_back(nV.size());	// add new index

							new_vertex.e[k].push_back(nE.size());	// set outgoing/incoming edge for the new vertex
							new_edge.v[k] = nV.size();				// set the starting/ending vertex for the new edge
							nV.push_back(new_vertex);
						}
						else {							// current vertex has been pushed back before
							int d = std::distance(OI.begin(), pos);
							new_edge.v[k] = NI[d];
							nV[NI[d]].e[k].push_back(nE.size());
						}
					}

					nE.push_back(new_edge);

					// copy radii information
					nE[nE.size() - 1].set_r(0, E[i].r(0));
					nE[nE.size() - 1].set_r(1, E[i].r(1));
				}
				else {						// if current edge contain at least 3 points, can be subdivided
					size_t num = E[i].size();
					for (size_t j = 0; j < num - 1; j++) {
						stim::centerline<T> line;
						for (size_t k = 0; k < 2; k++)		// copy points on current network
							line.push_back(E[i][k]);

						edge new_edge(line);
						if (j == 0) {					// for edge that contains original starting point
							vertex new_vertex = new_edge[0];
							id = E[i].v[0];
							std::vector<size_t>::iterator pos = std::find(OI.begin(), OI.end(), id);
							if (pos == OI.end()) {		// new vertex
								OI.push_back(id);
								NI.push_back(nV.size());

								new_vertex.e[0].push_back(nE.size());
								new_edge.v[0] = nV.size();
								nV.push_back(new_vertex);
							}
							else {
								int d = std::distance(OI.begin(), pos);
								new_edge.v[0] = NI[d];
								nV[NI[d]].e[0].push_back(nE.size());
							}

							new_vertex = new_edge[1];
							new_vertex.e[1].push_back(nE.size());
							new_edge.v[1] = nV.size();
							nV.push_back(new_vertex);
							nE.push_back(new_edge);
						}

						else if (j == E[i].size() - 2) {// for edge that contains original ending point
							vertex new_vertex = new_edge[1];
							nV[nV.size() - 1].e[0].push_back(nE.size());
							new_edge.v[0] = nV.size() - 1;

							id = E[i].v[1];				// get ending vertex index
							std::vector<size_t>::iterator pos = std::find(OI.begin(), OI.end(), id);
							if (pos == OI.end()) {
								OI.push_back(id);
								NI.push_back(nV.size());

								new_vertex.e[1].push_back(nE.size());
								new_edge.v[1] = nV.size();
								nV.push_back(new_vertex);
							}
							else {
								int d = std::distance(OI.begin(), pos);
								new_edge.v[1] = NI[d];
								nV[NI[d]].e[1].push_back(nE.size());
							}

							nE.push_back(new_edge);
						}

						else {							// for edge that doesn't contain original ending point
							vertex new_vertex = new_edge[1];

							// push back the latter one on that segment
							nV[nV.size() - 1].e[0].push_back(nE.size());
							new_vertex.e[1].push_back(nE.size());
							new_edge.v[0] = nV.size() - 1;
							new_edge.v[1] = nV.size();
							nV.push_back(new_vertex);
							nE.push_back(new_edge);
						}

						// copy radii information
						nE[nE.size() - 1].set_r(0, E[i].r(j));
						nE[nE.size() - 1].set_r(1, E[i].r(j + 1));
					}
				}
			}

			stim::network<T> result(nE, nV);

			return result;
		}

		// this function compares two networks and returns the percentage of the current network that is missing from "A"
		// @param "A" is the network to compare to - the field is generated for A
		// @param "sigma" is the user-defined tolerance value - smaller values provide a stricter comparison
		// @param "device" is the GPU device to use - default no GPU provided
		network<T> compare(network<T> A, T sigma, int device = -1) {
			network<T> R;		// generate a network storing the result of comparison
			R = (*this);		// initialize to current network

			size_t num = A.total_points();
			T* c = (T*)malloc(sizeof(T) * num * 3);			// allocate memory for the centerline of A

			A.copy_to_array(c);				// copy points in A to a 1D array

			size_t max_tree_level = 3;		// set max tree level parameter to 3

#ifdef __CUDACC__
			cudaSetDevice(device);
			stim::kdtree<T, 3> kdt;					// initialize a tree object

			kdt.create(c, num, max_tree_level);		// build tree

			for (size_t i = 0; i < R.E.size(); i++) {
				size_t n = R.E[i].size();			// the number of points in current edge
				T* query_point = new T[3 * n];		// allocate memory for points
				T* m1 = new T[n];					// allocate memory for metrics
				T* dists = new T[n];				// allocate memory for distances
				size_t* nnIdx = new size_t[n];		// allocate memory for indices

				T* d_dists;
				T* d_m1;
				cudaMalloc((void**)&d_dists, n * sizeof(T));
				cudaMalloc((void**)&d_m1, n * sizeof(T));

				edge_to_array(query_point, R.E[i]);
				kdt.search(query_point, n, nnIdx, dists);

				cudaMemcpy(d_dists, dists, n * sizeof(T), cudaMemcpyHostToDevice);			// copy dists from host to device

				// configuration parameters
				size_t threads = (1024 > n) ? n : 1024;
				size_t blocks = n / threads + (n % threads) ? 1 : 0;

				find_metric<< <blocks, threads >> >(d_m1, n, d_dists, sigma);		// calculate the metric value based on the distance

				cudaMemcpy(m1, d_m1, n * sizeof(T), cudaMemcpyDeviceToHost);

				for (size_t j  = 0; j < n; j++) {
					R.E[i].set_r(j, m1[j]);
				}
			}

#else		// if there is any GPU device, use CPU - much slower
			stim::kdtree<T, 3> kdt;
			kdt.create(c, num, max_tree_level);

			for (size_t i = 0; i < R.E.size(); i++) {			// for each edge in A

				size_t n = R.E[i].size();						// the number of points in current edge
				T* query = new T[3 * n];
				T* m1 = new T[n];
				T* dists = new T[n];
				size_t* nnIdx = new size_t[n];

				edge_to_array(query, R.E[i]);

				kdt.cpu_search(query, n, nnIdx, dists);			// find the distance between A and the current network

				for (size_t j = 0; j < n; j++) {
					m1[j] = 1.0f - gaussian(dists[j], sigma);	// calculate the metric value based on the distance
					R.E[i].set_r(j, m1[j]);						// set the error for the second point in the segment
				}
			}
#endif
			return R;
		}

		// this function compares two splitted networks to yield a mapping relationship between them according to nearest neighbor principle
		// @param "B" is the template network
		// @param "C" is the mapping relationship: C[e1] = _e1 means edge "e1" in current network is mapped to edge "_e1" in "B"
		// @param "device" is the GPU device that user want to use
		// @param "threshold" is to control mapping tolerance (threshold)
		void mapping(network<T> B, std::vector<size_t> &C, T threshold, int device = -1) {
			network<T> A;			// generate a network storing the result of the comparison
			A = (*this);

			size_t nA = A.E.size();	// the number of edges in A
			size_t nB = B.E.size();	// the number of edges in B

			C.resize(A.E.size());

			size_t num = B.total_points();			// set the number of points
			T* c = (T*)malloc(sizeof(T) * num * 3);
			
			B.copy_to_array(c);

			size_t max_tree_level = 3;

#ifdef __CUDACC__
			cudaSetDevice(device);
			stim::kdtree<T, 3> kdt;				// initialize a tree
			
			kdt.create(c, num, max_tree_level);		// build a tree

			T M = 0.0f;
			for (size_t i = 0; i < nA; i++) {
				M = A.ar(i);			// get the average metric of edge "i"
				if (M > threshold)
					C[i] = UINT_MAX;	// set to MAX
				else {
					T* query_point = new T[3];
					T* dist = new T[1];
					size_t* nnIdx = new size_t[1];

					for (size_t k = 0; k < 3; k++)
						query_point[k] = A.E[i][A.E[i].size() / 2][k];		// search by the middle one, risky?
					kdt.search(query_point, 1, nnIdx, dist);

					size_t id = 0;
					size_t sum = 0;
					for (size_t j = 0; j < nB; j++) {		// low_band
						sum += B.E[j].size();
						if (nnIdx[0] < sum) {
							C[i] = id;
							break;
						}
						id++;
					}
				}
			}

#else
			stim::kdtree<T, 3> kdt;
			kdt.create(c, num, max_tree_level);
			T* dist = new T[1];
			size_t* nnIdx = new size_t[1];

			stim::vec3<T> p;
			T* query_point = new T[3];

			T M = 0.0f;
			for (size_t i = 0; i < nA; i++) {
				M = A.ar(i);
				if (M > threshold)
					C[i] = UINT_MAX;
				else {
					p = A.E[i][A.E[i].size() / 2];
					for (size_t k = 0; k < 3; k++)
						query_point[k] = p[k];
					kdt.cpu_search(query_point, 1, nnIdx, dist);

					size_t id = 0;
					size_t sum = 0;
					for (size_t j = 0; j < nB; j++) {
						sum += B.E[j].size();
						if (nnIdx[0] < sum) {
							C[i] = id;
							break;
						}
						id++;
					}
				}
			}
#endif
		}
	};

}


#endif