bil.h
21.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
#ifndef STIM_BIL_H
#define STIM_BIL_H
#include "../envi/envi_header.h"
#include "../envi/binary.h"
#include <cstring>
#include <utility>
namespace stim{
template <typename T>
class bil: public binary<T> {
protected:
std::vector<double> w; //band wavelength
public:
using binary<T>::open;
using binary<T>::file;
using binary<T>::R;
//open a file, given the file and its header's names
bool open(std::string filename, unsigned int X, unsigned int Y, unsigned int B, unsigned int header_offset, std::vector<double> wavelengths){
w = wavelengths;
return open(filename, vec<unsigned int>(X, Y, B), header_offset);
}
//save one band of the file into the memory, and return the pointer
bool band_index( T * p, unsigned int page){
unsigned int L = R[0] * sizeof(T); //caculate the number of bytes in a sample line
unsigned int jump = R[0] * (R[2] - 1) * sizeof(T);
if (page >= R[2]){ //make sure the bank number is right
std::cout<<"ERROR: page out of range"<<std::endl;
return false;
}
file.seekg(R[0] * page * sizeof(T), std::ios::beg);
for (unsigned i = 0; i < R[1]; i++)
{
file.read((char *)(p + i * R[0]), L);
file.seekg( jump, std::ios::cur);
}
return true;
}
bool band( T * p, double wavelength){
//if there are no wavelengths in the BSQ file
if(w.size() == 0)
return band_index(p, (unsigned int)wavelength);
unsigned int XY = R[0] * R[1]; //calculate the number of pixels in a band
unsigned int S = XY * sizeof(T); //calculate the number of bytes of a band
unsigned page=0; //bands around the wavelength
//get the bands numbers around the wavelength
//if wavelength is smaller than the first one in header file
if ( w[page] > wavelength ){
band_index(p, page);
return true;
}
while( w[page] < wavelength )
{
page++;
//if wavelength is larger than the last wavelength in header file
if (page == R[2]) {
band_index(p, R[2]-1);
return true;
}
}
if ( wavelength < w[page] )
{
T * p1;
T * p2;
p1=(T*)malloc(S); //memory allocation
p2=(T*)malloc(S);
band_index(p1, page - 1);
band_index(p2, page );
for(unsigned i=0; i < XY; i++){
double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
p[i] = (p2[i] - p1[i]) * r + p1[i];
}
free(p1);
free(p2);
}
else //if the wavelength is equal to a wavelength in header file
{
band_index(p, page);
}
return true;
}
//get YZ line from the a Y slice, Y slice data should be already IN the MEMORY
bool getYZ(T* p, T* c, double wavelength)
{
unsigned int X = R[0]; //calculate the number of pixels in a sample
unsigned int B = R[2];
unsigned int L = X * sizeof(T);
unsigned page=0; //samples around the wavelength
T * p1;
T * p2;
//get the bands numbers around the wavelength
//if wavelength is smaller than the first one in header file
if ( w[page] > wavelength ){
memcpy(p, c, L);
return true;
}
while( w[page] < wavelength )
{
page++;
//if wavelength is larger than the last wavelength in header file
if (page == B) {
memcpy(p, c + (B - 1) * X, L);
return true;
}
}
if ( wavelength < w[page] )
{
p1=(T*)malloc( L ); //memory allocation
p2=(T*)malloc( L );
memcpy(p1, c + (page - 1) * X, L);
memcpy(p2, c + page * X, L);
for(unsigned i=0; i < X; i++){
double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
p[i] = (p2[i] - p1[i]) * r + p1[i];
}
}
else //if the wavelength is equal to a wavelength in header file
memcpy(p, c + page * X, L);
return true;
}
//save one pixel of the BIP file into the memory, and return the pointer
bool spectrum(T * p, unsigned x, unsigned y){
if ( x >= R[0] || y >= R[1]){ //make sure the sample and line number is right
std::cout<<"ERROR: sample or line out of range"<<std::endl;
exit(1);
}
unsigned jump = (R[0] - 1) * sizeof(T);
file.seekg((y * R[0] * R[2] + x) * sizeof(T), std::ios::beg);
for(unsigned i = 0; i < R[2]; i++)
{
//point to the certain sample and line
file.read((char *)(p + i), sizeof(T));
file.seekg(jump, std::ios::cur);
}
return true;
}
//save one pixel into memory
bool pixel(T * p, unsigned n){
//calculate the corresponding x, y
unsigned int x = n % R[0];
unsigned int y = n / R[0];
//get the pixel
return spectrum(p, x, y);
}
//given a Y ,return a XZ slice
bool getY(T * p, unsigned y)
{
if ( y >= R[1]){ //make sure the line number is right
std::cout<<"ERROR: line out of range"<<std::endl;
exit(1);
}
file.seekg(y * R[2] * R[0] * sizeof(T), std::ios::beg);
file.read((char *)p, sizeof(T) * R[2] * R[0]);
return true;
}
//(BIL) baseline correction
bool baseline(std::string outname, std::vector<double> wls){
unsigned N = wls.size(); //get the number of baseline points
std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file
std::string headername = outname + ".hdr"; //the header file name
//simplify image resolution
unsigned int ZX = R[2] * R[0]; //calculate the number of points in a Y slice
unsigned int L = ZX * sizeof(T); //calculate the number of bytes of a Y slice
unsigned int B = R[2];
unsigned int X = R[0];
T* c; //pointer to the current Y slice
c = (T*)malloc(L); //memory allocation
T* a; //pointer to the two YZ lines surrounding the current YZ line
T* b;
a = (T*)malloc(X * sizeof(T));
b = (T*)malloc(X * sizeof(T));
double ai, bi; //stores the two baseline points wavelength surrounding the current band
double ci; //stores the current band's wavelength
unsigned control;
if (a == NULL || b == NULL || c == NULL){
std::cout<<"ERROR: error allocating memory";
exit(1);
}
// loop start correct every y slice
for (unsigned k =0; k < R[1]; k++)
{
//get the current y slice
getY(c, k);
//initialize lownum, highnum, low, high
ai = w[0];
control=0;
//if no baseline point is specified at band 0,
//set the baseline point at band 0 to 0
if(wls[0] != w[0]){
bi = wls[control];
memset(a, (char)0, X * sizeof(T) );
}
//else get the low band
else{
control++;
getYZ(a, c, ai);
bi = wls[control];
}
//get the high band
getYZ(b, c, bi);
//correct every YZ line
for(unsigned cii = 0; cii < B; cii++){
//update baseline points, if necessary
if( w[cii] >= bi && cii != B - 1) {
//if the high band is now on the last BL point
if (control != N-1) {
control++; //increment the index
std::swap(a, b); //swap the baseline band pointers
ai = bi;
bi = wls[control];
getYZ(b, c, bi);
}
//if the last BL point on the last band of the file?
else if ( wls[control] < w[B - 1]) {
std::swap(a, b); //swap the baseline band pointers
memset(b, (char)0, X * sizeof(T) ); //clear the high band
ai = bi;
bi = w[B - 1];
}
}
ci = w[cii];
unsigned jump = cii * X;
//perform the baseline correction
for(unsigned i=0; i < X; i++)
{
double r = (double) (ci - ai) / (double) (bi - ai);
c[i + jump] =(T) ( c[i + jump] - (b[i] - a[i]) * r - a[i] );
}
}//loop for YZ line end
target.write(reinterpret_cast<const char*>(c), L); //write the corrected data into destination
}//loop for Y slice end
free(a);
free(b);
free(c);
target.close();
return true;
}
// normalize the BIL file
bool normalize(std::string outname, double w)
{
unsigned int B = R[2]; //calculate the number of bands
unsigned int Y = R[1];
unsigned int X = R[0];
unsigned int ZX = R[2] * R[0];
unsigned int XY = R[0] * R[1]; //calculate the number of pixels in a band
unsigned int S = XY * sizeof(T); //calculate the number of bytes in a band
unsigned int L = ZX * sizeof(T);
std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file
std::string headername = outname + ".hdr"; //the header file name
T * c; //pointer to the current ZX slice
T * b; //pointer to the standard band
b = (T*)malloc( S ); //memory allocation
c = (T*)malloc( L );
band(b, w); //get the certain band into memory
for(unsigned j = 0; j < Y; j++)
{
getY(c, j);
for(unsigned i = 0; i < B; i++)
{
for(unsigned m = 0; m < X; m++)
{
c[m + i * X] = c[m + i * X] / b[m + j * X];
}
}
target.write(reinterpret_cast<const char*>(c), L); //write normalized data into destination
}
free(b);
free(c);
target.close();
return true;
}
//convert BIL file to BSQ file and save it
bool bsq(std::string outname)
{
unsigned int S = R[0] * R[1] * sizeof(T); //calculate the number of bytes in a band
std::ofstream target(outname.c_str(), std::ios::binary);
std::string headername = outname + ".hdr";
T * p; //pointer to the current band
p = (T*)malloc(S);
for ( unsigned i = 0; i < R[2]; i++)
{
band_index(p, i);
target.write(reinterpret_cast<const char*>(p), S); //write a band data into target file
}
free(p);
target.close();
return true;
}
//convert bil file to bip file and save it
bool bip(std::string outname)
{
unsigned int S = R[0] * R[2] * sizeof(T); //calculate the number of bytes in a ZX slice
std::ofstream target(outname.c_str(), std::ios::binary);
std::string headername = outname + ".hdr";
T * p; //pointer to the current XZ slice for bil file
p = (T*)malloc(S);
T * q; //pointer to the current ZX slice for bip file
q = (T*)malloc(S);
for ( unsigned i = 0; i < R[1]; i++)
{
getY(p, i);
for ( unsigned k = 0; k < R[2]; k++)
{
unsigned ks = k * R[0];
for ( unsigned j = 0; j < R[0]; j++)
q[k + j * R[2]] = p[ks + j];
}
target.write(reinterpret_cast<const char*>(q), S); //write a band data into target file
}
free(p);
free(q);
target.close();
return true;
}
//providing the left and the right bound data, return baseline-corrected band height
bool baseline_band(double lb, double rb, T* lp, T* rp, double wavelength, T* result){
unsigned XY = R[0] * R[1];
band(result, wavelength); //get band
//perform the baseline correction
double r = (double) (wavelength - lb) / (double) (rb - lb);
for(unsigned i=0; i < XY; i++){
result[i] =(T) (result[i] - (rp[i] - lp[i]) * r - lp[i] );
}
return true;
}
bool height(double lb, double rb, double bandwavelength, T* result){
T* lp;
T* rp;
unsigned XY = R[0] * R[1];
unsigned S = XY * sizeof(T);
lp = (T*) malloc(S); //memory allocation
rp = (T*) malloc(S);
band(lp, lb);
band(rp, rb);
baseline_band(lb, rb, lp, rp, bandwavelength, result);
free(lp);
free(rp);
return true;
}
//calculate the area between two bound point(including baseline correction)
bool area(double lb, double rb, double lab, double rab, T* result){
T* lp; //left band pointer
T* rp; //right band pointer
T* cur; //current band 1
T* cur2; //current band 2
unsigned XY = R[0] * R[1];
unsigned S = XY * sizeof(T);
lp = (T*) malloc(S); //memory allocation
rp = (T*) malloc(S);
cur = (T*) malloc(S);
cur2 = (T*) malloc(S);
memset(result, (char)0, S);
//find the wavelenght position in the whole band
unsigned int n = w.size();
unsigned int ai = 0; //left bound position
unsigned int bi = n - 1; //right bound position
//to make sure the left and the right bound are in the bandwidth
if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
exit(1);
}
//to make sure rigth bound is bigger than left bound
else if(lb > rb){
std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
exit(1);
}
//get the position of lb and rb
while (lab >= w[ai]){
ai++;
}
while (rab <= w[bi]){
bi--;
}
band(lp, lb);
band(rp, rb);
//calculate the beginning and the ending part
baseline_band(lb, rb, lp, rp, rab, cur2); //ending part
baseline_band(lb, rb, lp, rp, w[bi], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (rab - w[bi]) * (cur[j] + cur2[j]) / 2.0;
}
baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part
baseline_band(lb, rb, lp, rp, w[ai], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (w[ai] - lab) * (cur[j] + cur2[j]) / 2.0;
}
//calculate the area
ai++;
for(unsigned i = ai; i <= bi ;i++)
{
baseline_band(lb, rb, lp, rp, w[ai], cur2);
for(unsigned j = 0; j < XY; j++)
{
result[j] += (w[ai] - w[ai-1]) * (cur[j] + cur2[j]) / 2.0;
}
std::swap(cur,cur2); //swap the band pointers
}
free(lp);
free(rp);
free(cur);
free(cur2);
return true;
}
//peak height ratio
bool ph_to_ph(double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, T * result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the two peak band
height(lb1, rb1, pos1, p1);
height(lb2, rb2, pos2, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//peak are to peak height ratio
bool pa_to_ph(double lb1, double rb1, double lab1, double rab1,
double lb2, double rb2, double pos, T* result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the area and the peak band
area(lb1, rb1, lab1, rab1, p1);
height(lb2, rb2, pos, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//peak area to peak area ratio
bool pa_to_pa(double lb1, double rb1, double lab1, double rab1,
double lb2, double rb2, double lab2, double rab2, T* result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the area and the peak band
area(lb1, rb1, lab1, rab1, p1);
area(lb2, rb2, lab2, rab2, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//x * f(x)
bool x_area(double lb, double rb, double lab, double rab, T* result){
T* lp; //left band pointer
T* rp; //right band pointer
T* cur; //current band 1
T* cur2; //current band 2
unsigned XY = R[0] * R[1];
unsigned S = XY * sizeof(T);
lp = (T*) malloc(S); //memory allocation
rp = (T*) malloc(S);
cur = (T*) malloc(S);
cur2 = (T*) malloc(S);
memset(result, (char)0, S);
//find the wavelenght position in the whole band
unsigned int n = w.size();
unsigned int ai = 0; //left bound position
unsigned int bi = n - 1; //right bound position
//to make sure the left and the right bound are in the bandwidth
if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
exit(1);
}
//to make sure rigth bound is bigger than left bound
else if(lb > rb){
std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
exit(1);
}
//get the position of lb and rb
while (lab >= w[ai]){
ai++;
}
while (rab <= w[bi]){
bi--;
}
band(lp, lb);
band(rp, rb);
//calculate the beginning and the ending part
baseline_band(lb, rb, lp, rp, rab, cur2); //ending part
baseline_band(lb, rb, lp, rp, w[bi], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (rab - w[bi]) * (rab + w[bi]) * (cur[j] + cur2[j]) / 4.0;
}
baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part
baseline_band(lb, rb, lp, rp, w[ai], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (w[ai] - lab) * (w[ai] + lab) * (cur[j] + cur2[j]) / 4.0;
}
//calculate f(x) times x
ai++;
for(unsigned i = ai; i <= bi ;i++)
{
baseline_band(lb, rb, lp, rp, w[ai], cur2);
for(unsigned j = 0; j < XY; j++)
{
result[j] += (w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * (cur[j] + cur2[j]) / 4.0;
}
std::swap(cur,cur2); //swap the band pointers
}
free(lp);
free(rp);
free(cur);
free(cur2);
return true;
}
//centroid point
bool cpoint(double lb, double rb, double lab, double rab, T* result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the area and the peak band
x_area(lb, rb, lab, rab, p1);
area(lb, rb, lab, rab, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//create mask file
bool build_mask(double mask_band, double threshold, unsigned char* p){
T* temp = (T*)malloc(R[0] * R[1] * sizeof(T)); //allocate memory for the certain band
band(temp, mask_band);
for (unsigned int i = 0; i < R[0] * R[1]; i++) {
if (temp[i] < threshold)
p[i] = 0;
else
p[i] = 255;
}
free(temp);
return true;
}
//apply mask
bool apply_mask(std::string outfile, unsigned char* p){
std::ofstream target(outfile.c_str(), std::ios::binary);
unsigned XZ = R[0] * R[2]; //calculate number of a band
unsigned L = XZ * sizeof(T);
T * temp = (T*)malloc(L);
for (unsigned i = 0; i < R[1]; i++)
{
getY(temp, i);
for ( unsigned j = 0; j < R[2]; j++)
{
for (unsigned k = 0; k < R[0]; k++)
{
if(p[i * R[0] + k] == 0)
temp[j * R[0] + k] = 0;
else
continue;
}
}
target.write(reinterpret_cast<const char*>(temp), L); //write a band data into target file
}
target.close();
free(temp);
return true;
}
//calculate the average band value
bool band_avg(T* p){
unsigned long long XZ = R[0] * R[2];
T* temp = (T*)malloc(sizeof(T) * XZ);
T* line = (T*)malloc(sizeof(T) * R[0]);
for (unsigned i = 0; i < R[1]; i++){
getY(temp, i);
//initialize x-line
for (unsigned j = 0; j < R[0]; j++){
line[j] = 0;
}
unsigned c = 0;
for (unsigned j = 0; j < R[2]; j++){
for (unsigned k = 0; k < R[0]; k++){
line[k] += temp[c] / (T)R[2];
c++;
}
}
for (unsigned j = 0; j < R[0]; j++){
p[j + i * R[0]] = line[j];
}
}
free(temp);
return true;
}
//calculate the average number of every band
bool avg_band(T*p, unsigned char* mask){
unsigned long long XZ = R[0] * R[2];
unsigned long long XY = R[0] * R[1];
T* temp = (T*)malloc(sizeof(T) * XZ);
for (unsigned j = 0; j < R[2]; j++){
p[j] = 0;
}
//calculate vaild number in a band
unsigned count = 0;
for (unsigned j = 0; j < XY; j++){
if (mask[j] != 0){
count++;
}
}
for (unsigned k = 0; k < R[1]; k++){
getY(temp, k);
unsigned kx = k * R[0];
for (unsigned i = 0; i < R[0]; i++){
if (mask[kx + i] != 0){
for (unsigned j = 0; j < R[2]; j++){
p[j] += temp[j * R[0] + i] / (T)count;
}
}
}
}
free(temp);
return true;
}
//calculate correlation coefficient matrix
bool co_matrix(T* co, T* avg, unsigned char *mask){
//memory allocation
unsigned long long xy = R[0] * R[1];
unsigned int B = R[2];
T* temp = (T*)malloc(sizeof(T) * B);
//count vaild pixels in a band
unsigned count = 0;
for (unsigned j = 0; j < xy; j++){
if (mask[j] != 0){
count++;
}
}
//initialize correlation matrix
for (unsigned i = 0; i < B; i++){
for (unsigned k = 0; k < B; k++){
co[i * B + k] = 0;
}
}
//calculate correlation coefficient matrix
for (unsigned j = 0; j < xy; j++){
if (mask[j] != 0){
pixel(temp, j);
for (unsigned i = 0; i < B; i++){
for (unsigned k = i; k < B; k++){
co[i * B + k] += (temp[i] - avg[i]) * (temp[k] - avg[k]) / count;
}
}
}
}
//because correlation matrix is symmetric
for (unsigned i = 0; i < B; i++){
for (unsigned k = i + 1; k < B; k++){
co[k * B + i] = co[i * B + k];
}
}
free(temp);
return true;
}
//crop specified area the of the original file
bool crop(std::string outfile, unsigned x0, unsigned y0, unsigned x1, unsigned y1){
//calculate the new number of samples and lines
unsigned long long sam = x1 - x0; //samples
unsigned long long lin = y1 - y0; //lines
unsigned long long L = sam * R[2] * sizeof(T);
//get specified band and save
T* temp = (T*)malloc(L);
std::ofstream out(outfile.c_str(), std::ios::binary);
unsigned long long jumpb = (R[0] - sam) * sizeof(T); //jump pointer to the next band
//get start
file.seekg((y0 * R[0] * R[2] + x0) * sizeof(T), std::ios::beg);
for (unsigned i = 0; i < lin; i++)
{
for (unsigned j = 0; j < R[2]; j++)
{
file.read((char *)(temp + j * sam), sizeof(T) * sam);
file.seekg(jumpb, std::ios::cur); //go to the next band
}
out.write(reinterpret_cast<const char*>(temp), L); //write slice data into target file
}
free(temp);
return true;
}
//close the file
bool close(){
file.close();
return true;
}
};
}
#endif