bil.h 21.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
#ifndef STIM_BIL_H
#define STIM_BIL_H

#include "../envi/envi_header.h"
#include "../envi/binary.h"
#include <cstring>
#include <utility>

namespace stim{

template <typename T>

class bil: public binary<T> {

protected:
	
	std::vector<double> w;		//band wavelength

public:

	using binary<T>::open;
	using binary<T>::file;
	using binary<T>::R;

	//open a file, given the file and its header's names
	bool open(std::string filename, unsigned int X, unsigned int Y, unsigned int B, unsigned int header_offset, std::vector<double> wavelengths){

		w = wavelengths;

		return open(filename, vec<unsigned int>(X, Y, B), header_offset);

	}

	//save one band of the file into the memory, and return the pointer
	bool band_index( T * p, unsigned int page){

		unsigned int L = R[0] * sizeof(T);		//caculate the number of bytes in a sample line
		unsigned int jump = R[0] * (R[2] - 1) * sizeof(T);

		if (page >= R[2]){										//make sure the bank number is right
			std::cout<<"ERROR: page out of range"<<std::endl;
			return false;
		}

		file.seekg(R[0] * page * sizeof(T), std::ios::beg);
		for (unsigned i = 0; i < R[1]; i++)
		{
			file.read((char *)(p + i * R[0]), L);
			file.seekg( jump, std::ios::cur);
		}

		return true;
	}

	bool band( T * p, double wavelength){

		//if there are no wavelengths in the BSQ file
		if(w.size() == 0)
			return band_index(p, (unsigned int)wavelength);

		unsigned int XY = R[0] * R[1];	//calculate the number of pixels in a band
		unsigned int S = XY * sizeof(T);		//calculate the number of bytes of a band

		unsigned page=0;                      //bands around the wavelength
		

		//get the bands numbers around the wavelength

		//if wavelength is smaller than the first one in header file
		if ( w[page] > wavelength ){
			band_index(p, page);
			return true;
		}

		while( w[page] < wavelength )
		{
			page++;
			//if wavelength is larger than the last wavelength in header file
			if (page == R[2]) {
				band_index(p, R[2]-1);
				return true;
			}
		}
		if ( wavelength < w[page] )
		{
			T * p1;
			T * p2;
			p1=(T*)malloc(S);                     //memory allocation
			p2=(T*)malloc(S);
			band_index(p1, page - 1);
			band_index(p2, page );
			for(unsigned i=0; i < XY; i++){
				double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
				p[i] = (p2[i] - p1[i]) * r + p1[i];
			}
			free(p1);
			free(p2);
		}
		else                           //if the wavelength is equal to a wavelength in header file
		{
			band_index(p, page);
		}

		return true;
	}

	//get YZ line from the a Y slice, Y slice data should be already IN the MEMORY
	bool getYZ(T* p, T* c, double wavelength)
	{
		unsigned int X = R[0];	//calculate the number of pixels in a sample
		unsigned int B = R[2];
		unsigned int L = X * sizeof(T);

		unsigned page=0;                      //samples around the wavelength
		T * p1;
		T * p2;

		//get the bands numbers around the wavelength

		//if wavelength is smaller than the first one in header file
		if ( w[page] > wavelength ){
			memcpy(p, c, L);	
			return true;
		}

		while( w[page] < wavelength )
		{
			page++;
			//if wavelength is larger than the last wavelength in header file
			if (page == B) {
				memcpy(p, c + (B - 1) * X, L);
				return true;
			}
		}
		if ( wavelength < w[page] )
		{
			p1=(T*)malloc( L );                     //memory allocation
			p2=(T*)malloc( L );

			memcpy(p1, c + (page - 1) * X, L);
			memcpy(p2, c + page * X, L);
			
			for(unsigned i=0; i < X; i++){
				double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
				p[i] = (p2[i] - p1[i]) * r + p1[i];
			}
		}
		else                           //if the wavelength is equal to a wavelength in header file		
			memcpy(p, c + page * X, L);
		
		return true;		
	}

	//save one pixel of the BIP file into the memory, and return the pointer
	bool spectrum(T * p, unsigned x, unsigned y){

		if ( x >= R[0] || y >= R[1]){							//make sure the sample and line number is right
			std::cout<<"ERROR: sample or line out of range"<<std::endl;
			exit(1);
		}

		unsigned jump = (R[0] - 1) * sizeof(T);

		file.seekg((y * R[0] * R[2] + x) * sizeof(T), std::ios::beg);

		for(unsigned i = 0; i < R[2]; i++)
		{       
			//point to the certain sample and line		
			file.read((char *)(p + i), sizeof(T));
			file.seekg(jump, std::ios::cur);  
		}	

		return true;	
	}

	//save one pixel into memory
	bool pixel(T * p, unsigned n){

		//calculate the corresponding x, y
		unsigned int x = n % R[0];
		unsigned int y = n / R[0];

		//get the pixel
		return spectrum(p, x, y);
	}
	
	//given a Y ,return a XZ slice
	bool getY(T * p, unsigned y)
	{
		if ( y >= R[1]){							//make sure the line number is right
			std::cout<<"ERROR: line out of range"<<std::endl;
			exit(1);
		}	
		
		file.seekg(y * R[2] * R[0] * sizeof(T), std::ios::beg);
		file.read((char *)p, sizeof(T) * R[2] * R[0]);
		
		return true;
		
	}
		
	//(BIL) baseline correction
	bool baseline(std::string outname, std::vector<double> wls){
	
		unsigned N = wls.size();			//get the number of baseline points
		
		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
		std::string headername = outname + ".hdr";              //the header file name		
		
		//simplify image resolution
		unsigned int ZX = R[2] * R[0];		//calculate the number of points in a Y slice
		unsigned int L = ZX * sizeof(T);			//calculate the number of bytes of a Y slice
		unsigned int B = R[2];
		unsigned int X = R[0];
		
		T* c;			//pointer to the current Y slice
		c = (T*)malloc(L);  //memory allocation
		
		T* a;			//pointer to the two YZ lines surrounding the current YZ line
		T* b;
		
		a = (T*)malloc(X * sizeof(T));
		b = (T*)malloc(X * sizeof(T));


		double ai, bi;	//stores the two baseline points wavelength surrounding the current band
		double ci;		//stores the current band's wavelength
		unsigned control;

		if (a == NULL || b == NULL || c == NULL){
			std::cout<<"ERROR: error allocating memory";
			exit(1);
		}
	//	loop start	correct every y slice
		
		for (unsigned k =0; k < R[1]; k++)
		{
			//get the current y slice
			getY(c, k);
		
			//initialize lownum, highnum, low, high		
			ai = w[0];
			control=0;
			//if no baseline point is specified at band 0,
			//set the baseline point at band 0 to 0
			if(wls[0] != w[0]){
				bi = wls[control];			
				memset(a, (char)0, X * sizeof(T) );
			}
			//else get the low band
			else{
				control++;
				getYZ(a, c, ai);
				bi = wls[control];
			}
			//get the high band
			getYZ(b, c, bi);
		
			//correct every YZ line
			
			for(unsigned cii = 0; cii < B; cii++){

				//update baseline points, if necessary
				if( w[cii] >= bi && cii != B - 1) {
					//if the high band is now on the last BL point
					if (control != N-1) {
	
						control++;		//increment the index
	
						std::swap(a, b);	//swap the baseline band pointers
	
						ai = bi;
						bi = wls[control];
						getYZ(b, c, bi);
	
					}
					//if the last BL point on the last band of the file?
					else if ( wls[control] < w[B - 1]) {
	
						std::swap(a, b);	//swap the baseline band pointers
	
						memset(b, (char)0, X * sizeof(T) );	//clear the high band
	
						ai = bi;
						bi = w[B - 1];
					}
				}
			
				ci = w[cii];
				
				unsigned jump = cii * X;
				//perform the baseline correction
				for(unsigned i=0; i < X; i++)
				{
					double r = (double) (ci - ai) / (double) (bi - ai);
					c[i + jump] =(T) ( c[i + jump] - (b[i] - a[i]) * r - a[i] );
				}
				
			}//loop for YZ line end  
			target.write(reinterpret_cast<const char*>(c), L);   //write the corrected data into destination	
		}//loop for Y slice end		
		
		free(a);
		free(b);
		free(c);
		target.close();
		return true;	
		
	}
		
	// normalize the BIL file
	bool normalize(std::string outname, double w)
	{
		unsigned int B = R[2];		//calculate the number of bands
		unsigned int Y = R[1];
		unsigned int X = R[0];
		unsigned int ZX = R[2] * R[0];
		unsigned int XY = R[0] * R[1];	//calculate the number of pixels in a band
		unsigned int S = XY * sizeof(T);		//calculate the number of bytes in a band		
		unsigned int L = ZX * sizeof(T);

		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
		std::string headername = outname + ".hdr";              //the header file name

		T * c;				//pointer to the current ZX slice
		T * b;				//pointer to the standard band

		b = (T*)malloc( S );     //memory allocation
		c = (T*)malloc( L ); 

		band(b, w);             //get the certain band into memory

		for(unsigned j = 0; j < Y; j++)
		{
			getY(c, j);
			for(unsigned i = 0; i < B; i++)
			{
				for(unsigned m = 0; m < X; m++)
				{
					c[m + i * X] = c[m + i * X] / b[m + j * X];
				}								
			}
			target.write(reinterpret_cast<const char*>(c), L);   //write normalized data into destination
		}
		
		free(b);
		free(c);
		target.close();
		return true;
	}
	
	//convert BIL file to BSQ file and save it
	bool bsq(std::string outname)
	{
		unsigned int S = R[0] * R[1] * sizeof(T);		//calculate the number of bytes in a band
		
		std::ofstream target(outname.c_str(), std::ios::binary);
		std::string headername = outname + ".hdr";
		
		T * p;			//pointer to the current band
		p = (T*)malloc(S);
		
		for ( unsigned i = 0; i < R[2]; i++)
		{			
				band_index(p, i);
				target.write(reinterpret_cast<const char*>(p), S);   //write a band data into target file	
		}

		free(p);
		target.close();
		return true;
	}

	//convert bil file to bip file and save it
	bool bip(std::string outname)
	{
		unsigned int S = R[0] * R[2] * sizeof(T);		//calculate the number of bytes in a ZX slice
		
		std::ofstream target(outname.c_str(), std::ios::binary);
		std::string headername = outname + ".hdr";
		
		T * p;			//pointer to the current XZ slice for bil file
		p = (T*)malloc(S);
		T * q;			//pointer to the current ZX slice for bip file
		q = (T*)malloc(S);
		
		for ( unsigned i = 0; i < R[1]; i++)
		{			
			getY(p, i);
			for ( unsigned k = 0; k < R[2]; k++)
			{
				unsigned ks = k * R[0];
				for ( unsigned j = 0; j < R[0]; j++)
					q[k + j * R[2]] = p[ks + j];
			}
			
			target.write(reinterpret_cast<const char*>(q), S);   //write a band data into target file	
		}


		free(p);
		free(q);
		target.close();
		return true;
	}


	//providing the left and the right bound data, return baseline-corrected band height
	bool baseline_band(double lb, double rb, T* lp, T* rp, double wavelength, T* result){

		unsigned XY = R[0] * R[1];
		band(result, wavelength);		//get band

		//perform the baseline correction
		double r = (double) (wavelength - lb) / (double) (rb - lb);
		for(unsigned i=0; i < XY; i++){
			result[i] =(T) (result[i] - (rp[i] - lp[i]) * r - lp[i] );
		}
		return true;
	}
	bool height(double lb, double rb, double bandwavelength, T* result){

		T* lp;
		T* rp;
		unsigned XY = R[0] * R[1];
		unsigned S = XY * sizeof(T);
		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);

		band(lp, lb);
		band(rp, rb);		

		baseline_band(lb, rb, lp, rp, bandwavelength, result);

		free(lp);
		free(rp);
		return true;
	}


	//calculate the area between two bound point(including baseline correction)
	bool area(double lb, double rb, double lab, double rab, T* result){

		T* lp;	//left band pointer
		T* rp;	//right band pointer
		T* cur;		//current band 1
		T* cur2;	//current band 2

		unsigned XY = R[0] * R[1];
		unsigned S = XY * sizeof(T);

		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);
		cur = (T*) malloc(S);
		cur2 = (T*) malloc(S);

		memset(result, (char)0, S);

		//find the wavelenght position in the whole band
		unsigned int n = w.size();
		unsigned int ai = 0;		//left bound position
		unsigned int bi = n - 1;		//right bound position



		//to make sure the left and the right bound are in the bandwidth
		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
			std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
			exit(1);
		}
		//to make sure rigth bound is bigger than left bound
		else if(lb > rb){
			std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
			exit(1);
		}

		//get the position of lb and rb
		while (lab >= w[ai]){
			ai++;
		}
		while (rab <= w[bi]){
			bi--;
		}

		band(lp, lb);
		band(rp, rb);

		//calculate the beginning and the ending part
		baseline_band(lb, rb, lp, rp, rab, cur2);		//ending part
		baseline_band(lb, rb, lp, rp, w[bi], cur);
		for(unsigned j = 0; j < XY; j++){
			result[j] += (rab - w[bi]) * (cur[j] + cur2[j]) / 2.0;
		}
		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
		baseline_band(lb, rb, lp, rp, w[ai], cur);
		for(unsigned j = 0; j < XY; j++){	
			result[j] += (w[ai] - lab) * (cur[j] + cur2[j]) / 2.0;
		}

		//calculate the area
		ai++;
		for(unsigned i = ai; i <= bi ;i++)
		{
			baseline_band(lb, rb, lp, rp, w[ai], cur2);
			for(unsigned j = 0; j < XY; j++)
			{
				result[j] += (w[ai] - w[ai-1]) * (cur[j] + cur2[j]) / 2.0; 
			}
			std::swap(cur,cur2);		//swap the band pointers
		}

		free(lp);
		free(rp);
		free(cur);
		free(cur2);
		return true;
	}

	//peak height ratio
	bool ph_to_ph(double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, T * result){

		T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		
		//get the two peak band
		height(lb1, rb1, pos1, p1);
		height(lb2, rb2, pos2, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < R[0] * R[1]; i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}
	
	//peak are to peak height ratio
	bool pa_to_ph(double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double pos, T* result){
		
		T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		
		//get the area and the peak band
		area(lb1, rb1, lab1, rab1, p1);
		height(lb2, rb2, pos, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < R[0] * R[1]; i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}		
	
	//peak area to peak area ratio
	bool pa_to_pa(double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double lab2, double rab2, T* result){
		
		T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		
		//get the area and the peak band
		area(lb1, rb1, lab1, rab1, p1);
		area(lb2, rb2, lab2, rab2, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < R[0] * R[1]; i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}		

	//x * f(x)
	bool x_area(double lb, double rb, double lab, double rab, T* result){
		T* lp;	//left band pointer
		T* rp;	//right band pointer
		T* cur;		//current band 1
		T* cur2;	//current band 2

		unsigned XY = R[0] * R[1];
		unsigned S = XY * sizeof(T);

		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);
		cur = (T*) malloc(S);
		cur2 = (T*) malloc(S);

		memset(result, (char)0, S);

		//find the wavelenght position in the whole band
		unsigned int n = w.size();
		unsigned int ai = 0;		//left bound position
		unsigned int bi = n - 1;		//right bound position

		//to make sure the left and the right bound are in the bandwidth
		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
			std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
			exit(1);
		}
		//to make sure rigth bound is bigger than left bound
		else if(lb > rb){
			std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
			exit(1);
		}

		//get the position of lb and rb
		while (lab >= w[ai]){
			ai++;
		}
		while (rab <= w[bi]){
			bi--;
		}

		band(lp, lb);
		band(rp, rb);

		//calculate the beginning and the ending part
		baseline_band(lb, rb, lp, rp, rab, cur2);		//ending part
		baseline_band(lb, rb, lp, rp, w[bi], cur);
		for(unsigned j = 0; j < XY; j++){
			result[j] += (rab - w[bi]) * (rab + w[bi]) * (cur[j] + cur2[j]) / 4.0;
		}
		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
		baseline_band(lb, rb, lp, rp, w[ai], cur);
		for(unsigned j = 0; j < XY; j++){	
			result[j] += (w[ai] - lab) * (w[ai] + lab) * (cur[j] + cur2[j]) / 4.0;
		}

		//calculate f(x) times x
		ai++;
		for(unsigned i = ai; i <= bi ;i++)
		{
			baseline_band(lb, rb, lp, rp, w[ai], cur2);
			for(unsigned j = 0; j < XY; j++)
			{
				result[j] += (w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * (cur[j] + cur2[j]) / 4.0; 
			}
			std::swap(cur,cur2);		//swap the band pointers
		}

		free(lp);
		free(rp);
		free(cur);
		free(cur2);
		return true;
	}

	//centroid point
	bool cpoint(double lb, double rb, double lab, double rab, T* result){
		T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));	
		
		//get the area and the peak band
		x_area(lb, rb, lab, rab, p1);
		area(lb, rb, lab, rab, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < R[0] * R[1]; i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}

	//create mask file
	bool build_mask(double mask_band, double threshold, unsigned char* p){

		T* temp = (T*)malloc(R[0] * R[1] * sizeof(T));		//allocate memory for the certain band
		band(temp, mask_band);

		for (unsigned int i = 0; i < R[0] * R[1]; i++) {
				if (temp[i] < threshold)
					p[i] = 0;
				else
					p[i] = 255;
		}

		free(temp);
		return true;
	}

	//apply mask
	bool apply_mask(std::string outfile, unsigned char* p){

		std::ofstream target(outfile.c_str(), std::ios::binary);

		unsigned XZ = R[0] * R[2];		//calculate number of a band
		unsigned L = XZ * sizeof(T);

		T * temp = (T*)malloc(L);

		for (unsigned i = 0; i < R[1]; i++)
		{
			getY(temp, i);
			for ( unsigned j = 0; j < R[2]; j++)
			{
				for (unsigned k = 0; k < R[0]; k++)
				{
				if(p[i * R[0] + k] == 0)
					temp[j * R[0] + k] = 0;
				else
					continue;
				}
			}
			target.write(reinterpret_cast<const char*>(temp), L);   //write a band data into target file	
		}
		target.close();
		free(temp);
		return true;
	}

	//calculate the average band value
	bool band_avg(T* p){
		unsigned long long XZ = R[0] * R[2];
		T* temp = (T*)malloc(sizeof(T) * XZ);
		T* line = (T*)malloc(sizeof(T) * R[0]);

		for (unsigned i = 0; i < R[1]; i++){
			getY(temp, i);
			//initialize x-line
			for (unsigned j = 0; j < R[0]; j++){
				line[j] = 0;
			}
			unsigned c = 0;
			for (unsigned j = 0; j < R[2]; j++){
				for (unsigned k = 0; k < R[0]; k++){
					line[k] += temp[c] / (T)R[2];
					c++;
				}
			}
			for (unsigned j = 0; j < R[0]; j++){
				p[j + i * R[0]] = line[j];
			}
		}
		free(temp);
		return true;
	}

	//calculate the average number of every band
	bool avg_band(T*p, unsigned char* mask){
		unsigned long long XZ = R[0] * R[2];
		unsigned long long XY = R[0] * R[1];
		T* temp = (T*)malloc(sizeof(T) * XZ);
		for (unsigned j = 0; j < R[2]; j++){
			p[j] = 0;
		}
		//calculate vaild number in a band
		unsigned count = 0;
		for (unsigned j = 0; j < XY; j++){
			if (mask[j] != 0){
				count++;
			}
		}
		for (unsigned k = 0; k < R[1]; k++){
			getY(temp, k);
			unsigned kx = k * R[0];
			for (unsigned i = 0; i < R[0]; i++){
				if (mask[kx + i] != 0){
					for (unsigned j = 0; j < R[2]; j++){
						p[j] += temp[j * R[0] + i] / (T)count;
					}
				}
			}
		}
		free(temp);
		return true;
	}

	//calculate correlation coefficient matrix
	bool co_matrix(T* co, T* avg, unsigned char *mask){
		//memory allocation
		unsigned long long xy = R[0] * R[1];
		unsigned int B = R[2];
		T* temp = (T*)malloc(sizeof(T) * B);
		//count vaild pixels in a band
		unsigned count = 0;
		for (unsigned j = 0; j < xy; j++){
			if (mask[j] != 0){
				count++;
			}
		}
		//initialize correlation matrix
		for (unsigned i = 0; i < B; i++){
			for (unsigned k = 0; k < B; k++){
				co[i * B + k] = 0;
			}
		}
		//calculate correlation coefficient matrix
		for (unsigned j = 0; j < xy; j++){
			if (mask[j] != 0){
				pixel(temp, j);
				for (unsigned i = 0; i < B; i++){
					for (unsigned k = i; k < B; k++){
						co[i * B + k] += (temp[i] - avg[i]) * (temp[k] - avg[k]) / count;
					}
				}
			}
		}
		//because correlation matrix is symmetric
		for (unsigned i = 0; i < B; i++){
			for (unsigned k = i + 1; k < B; k++){
				co[k * B + i] = co[i * B + k];
			}
		}

		free(temp);
		return true;
	}


	//crop specified area the of the original file
	bool crop(std::string outfile, unsigned x0, unsigned y0, unsigned x1, unsigned y1){

		//calculate the new number of samples and lines
		unsigned long long sam = x1 - x0;		//samples
		unsigned long long lin = y1 - y0;		//lines
		unsigned long long L = sam * R[2] * sizeof(T);
		//get specified band and save
		T* temp = (T*)malloc(L);
		std::ofstream out(outfile.c_str(), std::ios::binary);
		unsigned long long jumpb = (R[0] - sam) * sizeof(T);		//jump pointer to the next band
		//get start
		file.seekg((y0 * R[0] * R[2] + x0) * sizeof(T), std::ios::beg);
		for (unsigned i = 0; i < lin; i++)
		{
			for (unsigned j = 0; j < R[2]; j++)
			{
				file.read((char *)(temp + j * sam), sizeof(T) * sam);
				file.seekg(jumpb, std::ios::cur);    //go to the next band	
			}
			out.write(reinterpret_cast<const char*>(temp), L);   //write slice data into target file	
		}
		free(temp);
		return true;
	}


	//close the file
	bool close(){
		file.close();
		return true;
	}

	};
}

#endif