gl_spider.h 56.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
 #ifndef STIM_GL_SPIDER_H
#define STIM_GL_SPIDER_H

//#include <GL/glew.h>
#include <GL/glut.h>
#include <cuda.h>
#include <cuda_gl_interop.h>
#include <cudaGL.h>
#include <math.h>
#include <stim/gl/gl_texture.h>
#include <stim/visualization/camera.h>
#include <stim/gl/error.h>
#include <stim/math/vector.h>
#include <stim/math/vec3.h>
#include <stim/math/rect.h>
#include <stim/math/matrix.h>
#include <stim/math/constants.h>
#include <stim/cuda/spider_cost.cuh>
#include <stim/cuda/cudatools/glbind.h>
#include <stim/cuda/arraymath.cuh>
#include <stim/cuda/cuda_texture.cuh>
#include <stim/cuda/cudatools.h>
#include <stim/cuda/ivote.cuh>
#include <stim/visualization/glObj.h>
#include <vector>
#include <stack>
#include <stim/cuda/branch_detection.cuh>
#include "../../../volume-spider/glnetwork.h"
#include <stim/visualization/cylinder.h>
#include <stim/cuda/testKernel.cuh>
#include <iostream>
#include <fstream>
#ifdef TIMING
	#include <ctime>
	#include <cstdio>	
#endif

#ifdef TESTING
	#include <cstdio>
	#include <ctime>
#endif


namespace stim
{

template<typename T>
class gl_spider // : public virtual gl_texture<T>
{
	//doen't use gl_texture really, just needs the GLuint id.
	//doesn't even need the texture iD really.
	private:

		#ifdef TIMING
			double branch_time;// = 0;
			double direction_time;// = 0;
			double position_time;// = 0;
			double size_time;// = 0;
			double cost_time;// = 0;
			double network_time;// = 0;
			double hit_time;// = 0;
		#endif

		stim::vec3<float> p;  	//vector designating the position of the spider.
		stim::vec3<float> d;	//normalized direction of travel
		float m;			//size of the spider in tissue space.

		std::vector<stim::vec3<float> > dV;	//A list of all the direction vectors.
		std::vector<stim::vec3<float> > pV;	//A list of all test positions (relative to p)
		std::vector<float> mV;	//A list of all the size vectors.
		std::vector<float> lV;	//A list of all the size vectors.

		stim::matrix<float, 4> cT;			//current Transformation matrix (tissue)->(texture)
		GLuint texID;						//OpenGL ID for the texture to be traced
		stim::vec3<float> S;					//Size of a voxel in the volume.
		stim::vec3<float> R;					//Dimensions of the volume.


		//GL and Cuda variables
		GLuint dList;				//ID of the starting display lists (series of 4)
									//dList + 0 = direction template rectangles
									//dList + 1 = position template rectangles
									//dList + 2 = size template rectangles
									//dList + 3 = branch detection cylinder around the fiber

		GLuint fboID;				//framebuffer ID for direction templates
		GLuint texbufferID;			//texture ID for direction templates
		GLuint direction_buffID;				//framebuffer ID, position templates
		GLuint direction_texID;		//texture ID, position templates

		GLuint position_buffID;				//framebuffer ID, position templates
		GLuint position_texID;		//texture ID, position templates

		GLuint radius_buffID;				//framebuffer ID, radius templates
		GLuint radius_texID;		//texture ID, radius templates

		GLuint length_buffID;				//framebuffer ID, radius templates
		GLuint length_texID;		//texture ID, radius templates

		GLuint cylinder_buffID;				//framebuffer ID, cylinder (surrounding fiber)
		GLuint cylinder_texID;		//texture ID, cylinder

		int numSamples;				//The number of templates in the buffer.
		int numSamplesPos;
		int numSamplesMag;

		float length;				//this will be a function of the radius
		float stepsize;				//this will be a function of the length

		int current_cost;			//variable to store the cost of the current step		
		
		//Tracing variables.
		std::stack< stim::vec3<float> > seeds;		//seed positions
		std::stack< stim::vec3<float> > seedsvecs;	//seed directions
		std::stack< float > 		seedsmags;		//seed magnitudes

		std::vector< stim::vec3<float> > cL;	//centerline up to the current point
		std::vector< stim::vec3<float> > cD;	//directions up to the current point (debugging)
		std::vector< float > cM;		//radius up to the current point
		std::vector< float > cLen;		//radius up to the current point

		stim::glnetwork<float> nt;				//network object holding the currently traced centerlines
		stim::glObj<float> sk;					//OBJ file storing the network (identical to above)

		//consider replacing with two seed points facing opposite directions
		stim::vec<float> rev;					//reverse vector

		//selection mode - detecting fiber intersections
		stim::camera camSel;					//camera for selection mode (detecting collisions)
		stim::vec3<float> ps;					//position for the selection camera
		stim::vec3<float> ups;					//up direction for the selection camera
		stim::vec3<float> ds;					//direction for the selection camera

		float n_pixels;							//length of the template (in pixels)

		//cuda texture variables that keep track of the binding.
		stim::cuda::cuda_texture t_dir;				//cuda_texture object used as an interface between OpenGL and cuda for direction vectors.
		stim::cuda::cuda_texture t_pos;				//cuda_texture object used as an interface between OpenGL and cuda for position vectors.
		stim::cuda::cuda_texture t_mag;				//cuda_texture object used as an interface between OpenGL and cuda for size vectors.
		stim::cuda::cuda_texture t_len;				//cuda_texture object used as an interface between OpenGL and cuda for size vectors.

		int last_fiber;						//variable that tracks the last fiber hit during tracing. -1 if no fiber was hit.


		#ifdef DEBUG
			stringstream name;
			int iter;
			int iter_pos;
			int iter_dir;
			int iter_siz;
		#endif

//--------------------------------------------------------------------------//
//-------------------------------PRIVATE METHODS----------------------------//
//--------------------------------------------------------------------------//

		/// Method for finding the best scale for the spider.
		/// changes the x, y, z size of the spider to minimize the cost
		/// function. 
		void
		findOptimalDirection()
		{
			#ifdef TIMING
				gpuStartTimer();	//Timer for profiling
			#endif
			setMatrix();			//create the transformation matrix.
			glCallList(dList);		//move the templates to p, d, m.
			glFinish();			//flush the pipeline
			#ifdef TIMING
				direction_time += gpuStopTimer();	//profiling
			#endif

			int best = getCost(t_dir.getTexture(), t_dir.getAuxArray() ,numSamples);		//find min cost.
			#ifdef DEBUG
				name.str("");
				name << "Final_Cost_Direction_fiber_"<< iter << "_" << iter_dir << ".bmp";	
				test(t_dir.getTexture(), n_pixels*2.0, numSamples*n_pixels, name.str());
				iter_dir++;
			#endif
			stim::vec<float> next(		///calculate the next vector.
			dV[best][0]*S[0]*R[0],
			dV[best][1]*S[1]*R[1],
			dV[best][2]*S[2]*R[2],
			0);
			next = (cT*next).norm();	///transform the next vector into Tissue space.
			setPosition(	p[0]+next[0]*m/stepsize,
					p[1]+next[1]*m/stepsize,
					p[2]+next[2]*m/stepsize);	
			setDirection(next[0], next[1], next[2]);		//move forward and change direction.
		}

		/// Method for finding the best d (direction) for the spider.
		/// Not sure if necessary since the next p (position) for the spider
		/// will be at d * m.
		void
		findOptimalPosition()
		{
			#ifdef TIMING
				gpuStartTimer();	//timer for profiling
			#endif
			setMatrix();			//create the transformation matrix.
			glCallList(dList+1);		//move the templates to p, d, m.
			glFinish();			//flush the pipeline
//			glFlush();
			#ifdef TIMING
				position_time += gpuStopTimer();		///timer for profiling
			#endif

			int best = getCost(t_pos.getTexture(), t_pos.getAuxArray(), numSamplesPos);		//find min cost.
			#ifdef DEBUG
				name.str("");
				name << "Final_Cost_Position_" << iter << "_" << iter_pos << ".bmp";	
				test(t_pos.getTexture(), n_pixels*2.0, numSamplesPos*n_pixels, name.str());
				iter_pos++;
			#endif
			stim::vec<float> next(		//find next position.
 				pV[best][0],
				pV[best][1],
				pV[best][2],
				1);
			next = cT*next;			//transform the next position vector into tissue space.
			setPosition(
					next[0]*S[0]*R[0],
					next[1]*S[1]*R[1],
					next[2]*S[2]*R[2]
				   );			//adjust position.
		}
	
		/// Method for finding the best scale for the spider.
		/// changes the x, y, z size of the spider to minimize the cost
		/// function. 
		void
		findOptimalRadius()
		{
			#ifdef TIMING
				gpuStartTimer();
			#endif
			setMatrix();			//create the transformation.
			glCallList(dList+2);		//move the templates to p, d, m.
			glFinish();			//flush the drawing pipeline.
			#ifdef TIMING
				size_time += gpuStopTimer();
			#endif
			int best = getCost(t_mag.getTexture(), t_mag.getAuxArray(), numSamplesMag);		//get best cost.
			#ifdef DEBUG
				name.str("");
				name << "Final_Cost_Size_" << iter << "_" <<  iter_siz << ".bmp";	
				test(t_mag.getTexture(), n_pixels*2.0, numSamplesMag*n_pixels, name.str());
				iter_siz++;
			#endif
			setMagnitude(m*mV[best]);	//adjust the magnitude.
		}

		/// Method for finding the best length for the spider.
		/// changes the x, y, z size of the spider to minimize the cost
		/// function. 
		void
		findOptimalLength()
		{
			#ifdef TIMING
				gpuStartTimer();
			#endif
			setMatrix();			//create the transformation.
			glCallList(dList+3);		//move the templates to p, d, m.
			glFinish();			//flush the drawing pipeline.
			#ifdef TIMING
				size_time += gpuStopTimer();
			#endif
			int best = getCost(t_len.getTexture(), t_len.getAuxArray(), numSamplesMag);		//get best cost.
			#ifdef DEBUG
//				name.str("");
//				name << "Final_Cost_Size_" << iter << "_" <<  iter_siz << ".bmp";	
//				test(t_mag.getTexture(), n_pixels*2.0, numSamplesMag*n_pixels, name.str());
//				iter_siz++;
			#endif
			setLength(mV[best]);	//adjust the magnitude.
		}




		///finds all the branches in the a given fiber.
		///using LoG method.
		void
		branchDetection2(int n = 8, int l_template = 8, int l_square = 8)
		{
			#ifdef TIMING
				gpuStartTimer();		///timer for performance analysis
			#endif

			if(cL.size() < 4){}		///if the size of the fiber is less then 4 we do nothing.
			else{
			setMatrix(1);			///finds the current transformation matrix
			DrawLongCylinder(n, l_template, l_square);	///Draw the cylinder.
			stim::cylinder<float> cyl(cL, cM);
			std::vector< stim::vec<float> > result = find_branch(cylinder_texID, GL_TEXTURE_2D, n*l_square, (cL.size()-1)*l_template);		///find all the centers in cuda
			stim::vec3<float> size(S[0]*R[0], S[1]*R[1], S[2]*R[2]);			///the borders of the texture.
			float pval;									//pvalue associated with the points on the cylinder.
			if(!result.empty())								///if we have any points
			{
				for(int i = 0; i < result.size(); i++)					///for each point
				{
					int id = result[i][2];
					if(fmod(result[i][2], id) != 0 && id != 0)			///if the remainer is odd
					{
						
						pval = ((cyl.getl(id+1)-cyl.getl(id))*
							(fmod(result[i][2], id))+cyl.getl(id))/cyl.getl(cL.size()-1);		///calculate pvalue
					}
					else if(id == 0)									///if the point is on the edge
					{
						pval = (cyl.getl(id+1)*result[i][2])/cyl.getl(cL.size()-1);			
					}
					else
					{
						pval = (cyl.getl(id)/cyl.getl(cL.size()-1));					///if the point is somewhere on the surface of the cylinder other than the edge
					}
					stim::vec3<float> v = cyl.surf(pval, result[i][0]);					///find the coordinates of the point at pval on the surface in tissue space.
					stim::vec3<float> di = cyl.p(pval);							///find the coord of v in tissue space projected on the centerline.
					float rad = cyl.r(pval);								///find the radius at the pvalue's location
				//	float rad = cyl.r(pval)/2;								///find the radius at the pvalue's location
					if(
					 !(v[0] > size[0] || v[1] > size[1]
					 || v[2] > size[2] || v[0] < 0
					 || v[1] < 0 || v[2] < 0))								///if the v point is INSIDE the volume
					{
						setSeed(v);									///add a seedpoint's position.
						setSeedVec((v-di).norm());							///add a seedpoints direction
						setSeedMag(rad);								///add the starting radius.
					}
				}
			}
			}
			#ifdef TIMING
				branch_time += gpuStopTimer();									///timer for performance.
			#endif
		}


		float uniformRandom()
		{
			return (  (float)(rand()))/(  (float)(RAND_MAX));							///generates a random number between 0 and 1 using the uniform distribution.
		}

		float normalRandom()
		{
			float u1 = uniformRandom();
			float u2 = uniformRandom();
			return cos(2.0*atan(1.0)*u2)*sqrt(-1.0*log(u1));							///generate a random number using the normal distribution between 0 and 1.
		}

		stim::vec3<float> uniformRandVector()
		{
			stim::vec3<float> r(uniformRandom(), uniformRandom(), 1.0);						///generate a random vector using the uniform distribution between 0 and 1.
			return r;
		}

		stim::vec3<float> normalRandVector()
		{
			stim::vec3<float> r(normalRandom(), normalRandom(), 1.0);						///generate a random vector using the normal distribution between 0 and 1.
			return r;
		}

		
//--------------------------------------------------------------------------//
//---------------------TEMPLATE CREATION METHODS----------------------------//
//--------------------------------------------------------------------------//



		///@param solidAngle, the size of the arc to sample.
		///Method for populating the vector arrays with sampled vectors.
		///Objects created are rectangles the with the created directions.
		///All points are sampled from a texture.
		///Stored in a display list.
		///uses the default d vector <0,0,1>
		void
		genDirectionVectors(float solidAngle = 3*stim::PI/4)
		{

			//Set up the vectors necessary for Rectangle creation.
			stim::vec3<float> Y(1.0,0.0,0.0);		//orthogonal vec.
			stim::vec3<float> pos(0.0,0.0,0.0);		//center point of a rectangle
			float mag = 1.0;				//size of the generated rectangle.
			stim::vec3<float> dir(0.0, 0.0, 1.0);		//normal of the rectangle

			float PHI[2], Z[2], range;			
			PHI[0] = solidAngle/2;				///Project the solid angle into spherical coordinates
			PHI[1] = asin(0);
			
			Z[0] = cos(PHI[0]);				///Project the z into spherical coordinates
			Z[1] = cos(PHI[1]);
			
			range = Z[0] - Z[1];				///The range the possible values can be.

			float z, theta, phi;
			glNewList(dList, GL_COMPILE); 			///create a display list of all the direction templates.
			for(int i = 0; i < numSamples; i++)		///for each sample
			{
				z = uniformRandom()*range + Z[1];	///generate a z coordinate
				theta = uniformRandom()*stim::TAU;	///generate a theta coordinate
				phi = acos(z);				///generate a phi from the z.
				stim::vec3<float> sph(1, theta, phi);	///combine into a vector in spherical coordinates.
				stim::vec3<float> cart = sph.sph2cart();///convert to cartesian.	
				dV.push_back(cart);			///save the generated vector for further use.
				#ifdef DEBUG
//					std::cout << cart << std::endl;
				#endif
				if(cos(Y.dot(cart)) < 0.087)		///make sure that the Y is not parallel to the new vector.
				{
						Y[0] = 0.0; Y[1] = 1.0;
				}else{
					Y[0] = 1.0; Y[1] = 0.0;
				}

                                hor = stim::rect<float>(mag,		///generate a rectangle with the new vectro as a normal.
					 pos, cart,
                       			((Y.cross(cart)).cross(cart)).norm());

				#ifdef DEBUG
			//		std::cout << hor.n() << std::endl;
				#endif
       				ver = stim::rect<float>(mag,		///generate another rectangle that's perpendicular the first but parallel to the cart vector.
					 pos, cart,
                       			hor.n());
				UpdateBuffer(0.0, 0.0+i*n_pixels);	///Put the necessary points into the diplaylist.
			}
			glEndList();					///finilize the display list.
		}

		///@param float delta, How much the rectangles vary in position.
		///Method for populating the buffer with the sampled texture.
		///Objects created are rectangles the with the created positions.
		///All points are sampled from a texture.
		///Stored in a display list.
		///uses the default vector <0,0,0>
		void
		genPositionVectors(float delta = 0.4)
		{
			//Set up the vectors necessary for Rectangle creation.
			stim::vec3<float> Y(1.0,0.0,0.0);		//orthogonal vec.
			stim::vec3<float> pos(0.0,0.0,0.0);		//center point of a rectangle
			float mag = 1.0;				///size of each rectangle
			stim::vec3<float> dir(0.0, 0.0, 1.0);		///normal of the rectangle plane.

			//Set up the variable necessary for vector creation.
			glNewList(dList+1, GL_COMPILE);			///generate a new display list.
			pV.push_back(pos);
			hor = stim::rect<float>(mag,                    ///generate a rec     tangle with the new vector as a normal.  
                	        pos, dir,
	                       	((Y.cross(d)).cross(d))
	                        .norm());
                        ver = stim::rect<float>(mag,                    ///generate anoth     er rectangle that's perpendicular the first but parallel to the cart vector.
        	                pos, dir,
	                        hor.n()); 
									///The first vector is always in the center.
                        UpdateBuffer(0.0, 0.0+0*n_pixels);
			for(int i = 1; i < numSamplesPos; i++)		///for the number of position samples
			{
				stim::vec3<float> temp = uniformRandVector();	///generate a random point on a plane.
				temp[0] = temp[0]*delta;
				temp[1] = temp[1]*2*stim::PI;
				
				temp[2] = 0.0;
				temp = temp.cyl2cart();
				pV.push_back(temp);				///save the point for further use.
                		hor = stim::rect<float>(mag,			///generate a rectangle with the new vector as a normal.
					 temp, dir,
                      			((Y.cross(d)).cross(d))
					.norm());
                		ver = stim::rect<float>(mag,			///generate another rectangle that's perpendicular the first but parallel to the cart vector.
					 temp, dir,
                        		hor.n());
				UpdateBuffer(0.0, 0.0+i*n_pixels);		///sample the necessary points and put them into a display list.
			}
			glEndList();					///finilize the display list.
			#ifdef DEBUG
				for(int i = 0; i < numSamplesPos; i++)
					std::cout << pV[i] << std::endl;
			#endif
		}

		///@param float delta, How much the rectangles are allowed to expand.
		///Method for populating the buffer with the sampled texture.
		///Objects created are rectangles the with the created sizes.
		///All points are sampled from a texture.
		///Stored in a display list.
		///uses the default m <1,1,0>
		void
		genMagnitudeVectors(float delta = 0.70)
		{
			
			//Set up the vectors necessary for Rectangle creation.
			stim::vec3<float> Y(1.0, 0.0, 0.0);		//orthogonal vec.
			stim::vec3<float> pos(0.0, 0.0, 0.0);		//center of the future rect.
			float mag = 1.0;				///size of the rectangle
			stim::vec3<float> dir(0.0, 0.0, 1.0);		///normal of the rectangle plane.

			//Set up the variable necessary for vector creation.
			float min 	= 1.0-delta;			///smallest size
			float max 	= 1.0+delta;			///largers size.
			float step	= (max-min)/(numSamplesMag-1);	///the size variation from one rect to the next.
			float factor;
			glNewList(dList+2, GL_COMPILE);
			for(int i = 0; i < numSamplesMag; i++){		///for the number of position samples
				//Create linear index
				factor = (min+step*i)*mag;		///scaling factor
				mV.push_back(factor);			///save the size factor for further use.
				hor = stim::rect<float>(factor,		///generate a rectangle with the new vector as a normal.
					 pos, dir, 
       	       				((Y.cross(d)).cross(d))
					.norm());
               			ver = stim::rect<float>(factor,		///generate another rectangle that's perpendicular the first but parallel to the cart vector.
					 pos, dir,
                       			hor.n());
				UpdateBuffer(0.0, 0.0+i*n_pixels);	///sample the necessary points and put them into a display list.
			CHECK_OPENGL_ERROR
			}
			glEndList();					///finilize the displaylist.
		}

		///@param float delta, How much the rectangles are allowed to expand.
		///Method for populating the buffer with the sampled texture.
		///Objects created are rectangles the with the created sizes.
		///All points are sampled from a texture.
		///Stored in a display list.
		///uses the default m <1,1,0>
		void
		genLengthVectors(float delta = 0.70)
		{
			
			//Set up the vectors necessary for Rectangle creation.
			stim::vec3<float> Y(1.0, 0.0, 0.0);		//orthogonal vec.
			stim::vec3<float> pos(0.0, 0.0, 0.0);		//center of the future rect.
			float mag = 1.0;				///size of the rectangle
			stim::vec3<float> dir(0.0, 0.0, 1.0);		///normal of the rectangle plane.
			stim::vec<float> temp(0.0,0.0,0.0);

			//Set up the variable necessary for vector creation.
			float min 	= 1.0-delta;			///smallest size
			float max 	= 1.0+delta;			///largers size.
			float step	= (max-min)/(numSamplesMag-1);	///the size variation from one rect to the next.
			float factor;
			glNewList(dList+3, GL_COMPILE);
			for(int i = 0; i < numSamplesMag; i++){		///for the number of position samples
				//Create linear index
				factor = (min+step*i)*mag;		///scaling factor
				lV.push_back(factor);			///save the size factor for further use.
				temp[0] = factor;
				temp[1] = mag;
				hor = stim::rect<float>(temp,		///generate a rectangle with the new vector as a normal.
					 pos, dir, 
       	       				((Y.cross(d)).cross(d))
					.norm());
               			ver = stim::rect<float>(temp,		///generate another rectangle that's perpendicular the first but parallel to the cart vector.
					 pos, dir,
                       			hor.n());
				UpdateBuffer(0.0, 0.0+i*n_pixels);	///sample the necessary points and put them into a display list.
			CHECK_OPENGL_ERROR
			}
			glEndList();					///finilize the displaylist.
		}

		///@param float v_x x-coordinate in buffer-space,
		///@param float v_y y-coordinate in buffer-space.
		///Samples the texture space.
 		///places a sample in the provided coordinates of bufferspace.
		void
		UpdateBuffer(float v_x, float v_y)
		{	
			stim::vec3<float>p1; 				///first point.
        	        stim::vec3<float>p2; 				///second point.
	                stim::vec3<float>p3; 				///third point.
                	stim::vec3<float>p4;				///fourth point.
			p1 = hor.p(1,1);				///generate the top right point from the horizontal template.
			p2 = hor.p(1,0);				///generate the bottom right point from the horizonatal template.
			p3 = hor.p(0,0);				///generate the bottom left point from the horizontal template.
			p4 = hor.p(0,1);				///generate the top left point from the horizonatal template.
			glBegin(GL_QUADS);				///generate the Quad from the 4 points.
				glTexCoord3f(
					p1[0],
					p1[1],
					p1[2]
					);
				glVertex2f(v_x,v_y);
				glTexCoord3f(
					p2[0],
					p2[1],
					p2[2]
					);
				glVertex2f(v_x+n_pixels, v_y);
				glTexCoord3f(
					p3[0],
					p3[1],
					p3[2]
					);
				glVertex2f(v_x+n_pixels, v_y+n_pixels);
				glTexCoord3f(
					p4[0],
					p4[1],
					p4[2]
					);
				glVertex2f(v_x, v_y+n_pixels);
			 glEnd();					///finish the quad.

			 p1 = ver.p(1,1);				///generate the top right point from the vertical template.
			 p2 = ver.p(1,0);                               ///generate the bottom right point from the vertical template.
			 p3 = ver.p(0,0);                               ///generate the bottom left point from the vertical template.
			 p4 = ver.p(0,1);                               ///generate the top left point from the vertical template.
		 	 glBegin(GL_QUADS);				///generate the Quad from the 4 points.
				glTexCoord3f(
					p1[0],
					p1[1],
					p1[2]
					);
				glVertex2f(v_x+n_pixels, v_y);
				glTexCoord3f(
					p2[0],
					p2[1],
					p2[2]
					);
				glVertex2f(v_x+2.0*n_pixels, v_y);
				glTexCoord3f(
					p3[0],
					p3[1],
					p3[2]
					);
				glVertex2f(v_x+2.0*n_pixels, v_y+n_pixels);
				glTexCoord3f(
					p4[0],
					p4[1],
					p4[2]
					);
				glVertex2f(v_x+n_pixels, v_y+n_pixels);
			glEnd(); 					///finish the quad.
		}
		


//--------------------------------------------------------------------------//
//--------------------------------GL METHODS--------------------------------//
//--------------------------------------------------------------------------//

		///@param uint width sets the width of the buffer.
		///@param uint height sets the height of the buffer.
		///@param GLuint &textureID gives the texture ID of the texture to be initialized.
		///@param GLuint &framebufferID gives the buffer ID of the texture to be initialized.
		///Function for setting up the 2D buffer that stores the samples.
		///Initiates and sets parameters.
		void
		GenerateFBO(unsigned int width, unsigned int height, GLuint &textureID, GLuint &framebufferID)
		{
			glDeleteFramebuffers(1, &framebufferID);				///clear the framebuffer.
			glGenFramebuffers(1, &framebufferID);					///generate a clean buffer.
			glBindFramebuffer(GL_FRAMEBUFFER, framebufferID);			///bind the new buffer.
//			int numChannels = 1;
//			unsigned char* texels = new unsigned char[width * height * numChannels];
			glGenTextures(1, &textureID);						///generate a texture that will attach to the buffer.
			glBindTexture(GL_TEXTURE_2D, textureID);

			//Textures repeat and use linear interpolation, luminance format.
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);		///Set up the texture to repeat at edges.
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);		
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);	///Set up the texture to use Linear interpolation
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
			glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE,				///Create the texture with no data.
				 width, height, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, NULL);   
//			delete[] texels;
			glBindFramebuffer(GL_FRAMEBUFFER, 0); 					///Bind the frontbuffer
			glBindTexture(GL_TEXTURE_2D, 0);					///Unbind the texture.
		}


		///IF type == 0
		///Method for using the gl manipulation to align templates from
		///Template space (-0.5 0.5) to Texture space (0.0, 1.0),
		///Based on the p of the spider in real space (arbitrary).

		///IF type == 1
		///Method for using the gl manipulation to set up a matrix 
		///To transform from tissue space into texture space.
		///All transformation happen in glMatrixMode(GL_TEXTURE).
		///All transformation happen in glMatrixMode(GL_TEXTURE).
		void setMatrix(int type = 0)
		{
			if(type == 0)
			{
				float curTrans[16];			//array to store the matrix values.
				stim::vec<float> rot = getRotation(d);	//get the rotation parameters for the current direction vector.
				glMatrixMode(GL_TEXTURE);
				glLoadIdentity();

				//Scale by the voxel size and number of slices.
				glScalef(1.0/S[0]/R[0], 1.0/S[1]/R[1], 1.0/S[2]/R[2]);
				//translate to the current position of the spider in the texture.
				glTranslatef(p[0],
					     p[1],
					     p[2]);
				//rotate to the current direction of the spider.
				glRotatef(rot[0], rot[1], rot[2], rot[3]);
				//scale to the magnitude of the spider.
				glScalef(m,
					 m,
					 m);
				//get and store the current transformation matrix for later use.
				glGetFloatv(GL_TEXTURE_MATRIX, curTrans);
				cT.set(curTrans);
				
				CHECK_OPENGL_ERROR
				//revert back to default gl mode.
				glMatrixMode(GL_MODELVIEW);
			}
			else if(type == 1)
			{
				glMatrixMode(GL_TEXTURE);
				glLoadIdentity();
				glScalef(1.0/S[0]/R[0], 1.0/S[1]/R[1], 1.0/S[2]/R[2]);
				glMatrixMode(GL_MODELVIEW);
			}
		}

		///Method for controling the buffer and texture binding.
		///Clears the buffer upon binding.
		void
		Bind()
		{
			glBindFramebuffer(GL_FRAMEBUFFER, direction_buffID);//set up GL buffer		
			glFramebufferTexture2D(
				GL_FRAMEBUFFER,
				GL_COLOR_ATTACHMENT0,
				GL_TEXTURE_2D,
				direction_texID,
				0);			///Bind the texture to the 0th color attachement of the framebuffer
			glBindFramebuffer(GL_FRAMEBUFFER, direction_buffID);	///Bind the buffer again (safety operation).
			GLenum DrawBuffers[1] = {GL_COLOR_ATTACHMENT0};		///Designate the texture to be the drawbuffer of the framebuffer
			glDrawBuffers(1, DrawBuffers);				///Set the current drawbuffer to the texture.
			glBindTexture(GL_TEXTURE_2D, direction_texID);		///Bind the Texture
			glClearColor(1,1,1,1);					///Set clear color to white
			glClear(GL_COLOR_BUFFER_BIT);				///Clear the texture
			glMatrixMode(GL_PROJECTION);				
			glLoadIdentity();
			glMatrixMode(GL_MODELVIEW);
			glLoadIdentity();					///Load identity matrix into the projection and modelview
			glViewport(0,0,2.0*n_pixels, numSamples*n_pixels);	///Designate the viewport and orth
			gluOrtho2D(0.0,2.0*n_pixels,0.0,numSamples*n_pixels);
			glEnable(GL_TEXTURE_3D);
			glBindTexture(GL_TEXTURE_3D, texID);			///Bind the larger 3D texture.

			CHECK_OPENGL_ERROR
		}

		///Method for controling the buffer and texture binding.
		///Clears the buffer upon binding.
		///@param GLuint &textureID, texture to be bound.
		///@param GLuint &framebufferID, framebuffer used for storage.
		///@param int nSamples, number of rectanges to create. 
		void
		Bind(GLuint &textureID, GLuint &framebufferID, int nSamples, float len = 8.0)
		{
			
			glBindFramebuffer(GL_FRAMEBUFFER, framebufferID);	///Bind the framebuffer.
			glFramebufferTexture2D(					///associate it with the texture
				GL_FRAMEBUFFER,
				GL_COLOR_ATTACHMENT0,
				GL_TEXTURE_2D,
				textureID,
				0);
			glBindFramebuffer(GL_FRAMEBUFFER, framebufferID);	///Bind the framebuffer.
			GLenum DrawBuffers[1] = {GL_COLOR_ATTACHMENT0};		///generate the drawbuffer.
			glDrawBuffers(1, DrawBuffers);				///set the drawbuffer.
			glBindTexture(GL_TEXTURE_2D, textureID);		///Bind the texture passed.
			glMatrixMode(GL_PROJECTION);				///clear out the draw matrices
			glLoadIdentity();
			glMatrixMode(GL_MODELVIEW);
			glLoadIdentity();
			glViewport(0,0,2.0*len, nSamples*len);			///set up viewport
			gluOrtho2D(0.0,2.0*len,0.0,nSamples*len);		///Set up ortho
			glEnable(GL_TEXTURE_3D);				
			glBindTexture(GL_TEXTURE_3D, texID);			///bind the main texture (return to original state).

			CHECK_OPENGL_ERROR
		}
		
		///Unbinds all texture resources.
		void
		Unbind()
		{
			//Finalize GL_buffer
			glBindTexture(GL_TEXTURE_3D, 0);                      ///Bind the front buffer.
			CHECK_OPENGL_ERROR
			glBindTexture(GL_TEXTURE_2D, 0);                      ///Bind the default GL texture.
			CHECK_OPENGL_ERROR
			glBindFramebuffer(GL_FRAMEBUFFER, 0);		      ///Bind the defautl framebuffer.
			CHECK_OPENGL_ERROR
			glDisable(GL_TEXTURE_3D);			      ///Turn off texturing.
			CHECK_OPENGL_ERROR
		}

		


//--------------------------------------------------------------------------//
//--------------------------------CUDA METHODS------------------------------//
//--------------------------------------------------------------------------//
		

		///Entry-point into the cuda code for calculating the cost of a given samples array (in texture form)
		///finds the minimum cost and sets the current_cost to that value.
		/// and returns the index of the template with the minimal cost. 
		int
		getCost(cudaTextureObject_t tObj, float* result, int n)
		{
			#ifdef TIMING
				gpuStartTimer();			///Add timing variables
			#endif
			stim::vec<int> cost = 
				stim::cuda::get_cost(tObj, result, n, 2*n_pixels, n_pixels);	///call the cuda function with the appropriate texture buffer.
			#ifdef TIMING
				cost_time += gpuStopTimer();		
			#endif
			current_cost = cost[1];							///current cost.
			return cost[0];
		}

	public:

		///ininializes the cuda device and environment.
		void
		initCuda()
		{	
			stim::cudaSetDevice();
		}

		//horizonal rectangle forming the spider.
		stim::rect<float> hor;
		//vectical rectangle forming the spider.
		stim::rect<float> ver;	

		//Timing variables.

//--------------------------------------------------------------------------//
//-----------------------------CONSTRUCTORS---------------------------------//
//--------------------------------------------------------------------------//


		///@param int samples, the number of samples this spider is going to use.
		///Best results if samples is can create a perfect root.
		///Default Constructor
		gl_spider
		(int samples = 1089, int samplespos = 441,int samplesmag = 144)
		{
			p = stim::vec3<float>(0.0, 0.0, 0.0);
			d = stim::vec3<float>(0.0, 0.0, 1.0);
			m = 1.0;
			S = stim::vec3<float>(1.0, 1.0, 1.0);
			R = stim::vec3<float>(1.0, 1.0, 1.0);
			numSamples = samples;
			numSamplesPos = samplespos;
			numSamplesMag = samplesmag;
		#ifdef DEBUG
			iter = 0;
			iter_pos = 0;
			iter_dir = 0;
			iter_siz = 0;
		#endif
		}

		///Position constructor: floats.
		///@param float pos_x, position x.
		///@param float pos_y, position y.
		///@param float pos_z, position z.
		///@param float dir_x, direction x.
		///@param float dir_y, direction y.
		///@param float dir_z, direction z.
		///@param float mag_x, size of the vector.
		///@param int 	samples, number of templates this spider is going to use.
		gl_spider
		(float pos_x, float pos_y, float pos_z, float dir_x, float dir_y, float dir_z,
			float mag_x, int numsamples = 1089, int numsamplespos = 441, int numsamplesmag =144)
		{
			p = stim::vec3<float>(pos_x, pos_y, pos_z);
			d = stim::vec3<float>(dir_x, dir_y, dir_z);
			m = mag_x;
			S = stim::vec3<float>(1.0,1.0,1.0);
			R = stim::vec3<float>(1.0,1.0,1.0);
			numSamples = numsamples;
			numSamplesPos = numsamplespos;
			numSamplesMag = numsamplesmag;
		#ifdef DEBUG
			iter = 0;
			iter_pos = 0;
			iter_dir = 0;
			iter_siz = 0;
		#endif
		}

		///Position constructor: vecs of floats.
		///@param stim::vec<float> pos, position.
		///@param stim::vec<float> dir, direction.
		///@param float mag, size of the vector.
		///@param int 	samples, number of templates this spider is going to use.
		gl_spider
		(stim::vec3<float> pos, stim::vec3<float> dir, float mag, int samples = 1089, int samplesPos = 441, int samplesMag = 144)
		{
			p = pos;
			d = dir;
			m = mag;
			S = vec3<float>(1.0,1.0,1.0);
			R = vec3<float>(1.0,1.0,1.0);
			numSamples = samples;
			numSamplesPos = samplesPos;
			numSamplesMag = samplesMag;
		#ifdef DEBUG
			iter = 0;
			iter_pos = 0;
			iter_dir = 0;
			iter_siz = 0;
		#endif
		}

		///destructor deletes all the texture and buffer objects.
		~gl_spider
		(void)
		{
			Unbind();
			glDeleteTextures(1, &direction_texID);
			glDeleteBuffers(1, &direction_buffID);
			glDeleteTextures(1, &position_texID);
			glDeleteBuffers(1, &position_buffID);
			glDeleteTextures(1, &radius_texID);
			glDeleteBuffers(1, &radius_buffID);     
			glDeleteTextures(1, &length_texID);
			glDeleteBuffers(1, &length_buffID);     
			glDeleteTextures(1, &cylinder_texID);
			glDeleteBuffers(1, &cylinder_buffID);
		}

		///@param GLuint id, texture that is going to be sampled.
		///Attached the spider to the texture with the given GLuint ID.
		///Samples in the default d acting as the init method.
		///Also acts an init.	
		void
		attachSpider(GLuint id)
		{
#ifdef TIMING
			branch_time = 0;
			direction_time = 0;
			position_time = 0;
			size_time = 0;
			cost_time = 0;
			network_time = 0;
			hit_time = 0;
#endif
#ifdef DEBUG
			iter = 0;
			iter_pos = 0;
			iter_dir = 0;
			iter_siz = 0;
#endif
			stepsize = 3.0;
			n_pixels = 16.0;

			srand(100);	
			texID = id;
			GenerateFBO(n_pixels*2, numSamples*n_pixels, direction_texID, direction_buffID); 
			CHECK_OPENGL_ERROR
			GenerateFBO(n_pixels*2, numSamplesPos*n_pixels, position_texID, position_buffID); 
			CHECK_OPENGL_ERROR
			GenerateFBO(n_pixels*2, numSamplesMag*n_pixels, radius_texID, radius_buffID); 
			CHECK_OPENGL_ERROR
			GenerateFBO(n_pixels*2, numSamplesMag*n_pixels, length_texID, length_buffID); 
			CHECK_OPENGL_ERROR
			GenerateFBO(16, 216, cylinder_texID, cylinder_buffID); 
			CHECK_OPENGL_ERROR
			t_dir.MapCudaTexture(direction_texID, GL_TEXTURE_2D);
			t_dir.Alloc(numSamples);
			t_pos.MapCudaTexture(position_texID, GL_TEXTURE_2D);
			t_pos.Alloc(numSamplesPos);
			t_mag.MapCudaTexture(radius_texID, GL_TEXTURE_2D);
			t_mag.Alloc(numSamplesMag);
			t_len.MapCudaTexture(length_texID, GL_TEXTURE_2D);
			t_len.Alloc(numSamplesMag);
			setMatrix();
			dList = glGenLists(4);
			glListBase(dList);
			Bind(direction_texID, direction_buffID, numSamples, n_pixels);
				genDirectionVectors(5*stim::PI/4);
			Unbind();
			Bind(position_texID, position_buffID, numSamplesPos, n_pixels);
				genPositionVectors(0.2);
			Unbind();
			Bind(radius_texID, radius_buffID, numSamplesMag, n_pixels);
				genMagnitudeVectors();
			Unbind();
			Bind(length_texID, length_buffID, numSamplesMag, n_pixels);
				genLengthVectors();
			Unbind();
		}
		
//--------------------------------------------------------------------------//
//-----------------------------ACCESS METHODS-------------------------------//
//--------------------------------------------------------------------------//
		///Returns the p vector.
		vec3<float>
		getPosition()
		{
			return p;
		}
	
		///Returns the d vector.
		vec3<float>
		getDirection()
		{
			return d;
		}

		///Returns the m vector.
		float	
		getMagnitude()
		{
			return m;
		}
	
		///@param stim::vec<float> pos, the new p.
		///Sets the p vector to input vector pos.
		void
		setPosition(stim::vec3<float> pos)
		{
			p = pos;
		}

		///@param float x x-coordinate.
		///@param float y y-coordinate.
		///@param float z z-coordinate.
		///Sets the p vector to the input float coordinates x,y,z.
		void
		setPosition(float x, float y, float z)
		{
			p[0] = x;
			p[1] = y;
			p[2] = z;
		}
		
		///@param stim::vec<float> dir, the new d.
		///Sets the d vector to input vector dir.
		void
		setDirection(stim::vec3<float> dir)
		{
			d = dir;
		}
		
		///@param stim::vec<float> x x-coordinate.
		///@param stim::vec<float> y y-coordinate.
		///@param stim::vec<float> z z-coordinate.
		///Sets the d vector to the input float coordinates x,y,z.
		void
		setDirection(float x, float y, float z)
		{
			d[0] = x;
			d[1] = y;
			d[2] = z;
		}
			
		
		///@param float mag, size of the sampled region.
		///Sets the m value to the input mag for both templates.
		void
		setMagnitude(float mag)
		{
			m = mag;
		}

		///@param float len, length of the sampled region.
		///Sets the length value to the input len for both templates.
		void
		setLength(float len)
		{
			length = len;
		}
		
		///@param float x, voxel size in the x direction.
		///@param float y, voxel size in the y direction.
		///@param float z, voxel size in the z direction.
		///Sets the voxel sizes in each direction. necessary for non-standard data.
		void
		setDims(float x, float y, float z)
		{
			S[0] = x;
			S[1] = y;
			S[2] = z;
		}

		///@param stim::vec<float> Dims, voxel size.
		///Sets the voxel sizes in each direction. necessary for non-standard data.
		void
		setDims(stim::vec3<float> Dims)
		{
			S = Dims;
		}

		///@param float x, size of the data in the x direction.
		///@param float y, size of the data in the y direction.
		///@param float z, size of the data in the z direction.
		///Sets the data volume sizes in each direction.
		void
		setSize(float x, float y, float z)
		{
			R[0] = x;
			R[1] = y;
			R[2] = z;
		}

		///@param stim::vec<float> Dims, size of the volume.
		///Sets the data volume sizes in each direction.
		void
		setSize(stim::vec3<float> Siz)
		{
			S = Siz;
		}
		
		///@param stim::vec<float> dir, the vector to which we are rotating.
		///given a vector to align to, finds the required axis and angle for glRotatef.
		///rotates from 0.0, 0.0, 1.0 to dir.
		///return is in degrees for use with glRotatef.
		stim::vec<float>
		getRotation(stim::vec3<float> dir)
		{
			stim::vec<float> out(0.0,0.0,0.0,0.0);	///The 4D rotation matrix for GL rotation
			stim::vec3<float> from(0.0,0.0,1.0); 	///Converting from template always involves 0,0,1 as a starting vector
			out[0] = acos(dir.dot(from))*180/stim::PI; ///angle of rotation
			if(out[0] < 1.0){
				out[0] = 0.0;
				out[1] = 0.0;
				out[2] = 0.0;
				out[3] = 1.0;
			}					///if we rotate less what one degree don't rotate
			else if(out[0] < -179.0)		///if we rotate more than -179 degrees rotate 180.
			{
				out[0] = 180.0;
				out[1] = 1.0;
				out[2] = 0.0;
				out[3] = 0.0;
			} else {				///the rotational axis is the cross fromxdir.
				stim::vec3<float> temp(0.0, 0.0, 0.0);;
				temp = (from.cross(dir)).norm();
				out[1] = temp[0];
				out[2] = temp[1];
				out[3] = temp[2];
			}
			#ifdef DEBUG
//				std::cout << "out is " << out << std::endl;
//				std::cout << "when rotating from " << from << " to " << dir << std::endl;
			#endif
			return out;
		}

		///@param stim::vec<float> pos, the position of the seed to be added.
		///Adds a seed to the seed list.
		///Assumes that the coordinates passes are in tissue space.
		void
		setSeed(stim::vec3<float> pos)
		{
			seeds.push(pos);
		}

		///@param stim::vec<float> dir, the direction of the seed to be added.
		///Adds a seed to the seed directions list.
		void
		setSeedVec(stim::vec3<float> dir)
		{
			seedsvecs.push(dir);
		}

		///@param float mag, the size of the seed to be added.
		///Adds a seed to the seed list.
		///Assumes that the coordinates passes are in tissue space.
		void
		setSeedMag(float mag)
		{
			seedsmags.push(mag);
		}


		///@param float x, x-position of the seed to be added.
		///@param float y, y-position of the seed to be added.
		///@param float z, z-position of the seed to be added.
		///Adds a seed to the seed list.
		///Assumes that the coordinates passes are in tissue space.
		void
		setSeed(float x, float y, float z)
		{
			seeds.push(stim::vec<float>(x, y, z));
		}

		///@param float x, x-direction of the seed to be added.
		///@param float y, y-direction of the seed to be added.
		///@param float z, z-direction of the seed to be added.
		///Adds a seed to the seed directions list.
		void
		setSeedVec(float x, float y, float z)
		{
			seedsvecs.push(stim::vec<float>(x, y, z));
		}
		
		///Method to get the top of the seed positions stack.
		stim::vec3<float> 
		getLastSeed()
		{
			stim::vec3<float> tp = seeds.top();
			return tp;
		}

		///Method to get the top of the seed direction stack.
		stim::vec3<float> 
		getLastSeedVec()
		{
			stim::vec3<float> tp = seedsvecs.top();
			return tp;
		}

		///Method to get the top of the seed magnitude stack.
		float
		getLastSeedMag()
		{
			float tp = seedsmags.top();
			return tp;
		}

		///deletes all data associated with the last seed.
		void
		popSeed()
		{
			seeds.pop();
			seedsvecs.pop();
			seedsmags.pop();
		}
		
		///returns the seeds position stack.
		std::stack<stim::vec3<float> >
		getSeeds()
		{
			return seeds;
		}

		///sets the number of direction templates.
		void
		setNumberDirectionTemplates(int n)
		{
			numSamples = n;
		}

		///sets the number of position templates.
		void
		setNumberPositionTemplates(int n)
		{
			numSamplesPos = n;
		}

		///sets the number of position templates.
		void
		setNumberSizeTemplates(int n)
		{
			numSamplesMag = n;
		}

		#ifdef TIMING
		///Returns the timings at the moment the method is called.
		///In the following order: Branch, Direction, Position, Size, Cost, Network, Hit_detetion.
		std::vector<double> 
		getTimings()
		{
			std::vector <double> ret;
			ret.resize(7);
			ret[0] = branch_time;
			ret[1] = direction_time;
			ret[2] = position_time;
			ret[3] = size_time;
			ret[4] = cost_time;
			ret[5] = network_time;
			ret[6] = hit_time;

			return ret;
		}
		#endif

		///returns true if all seed stacks are empty, else false.
		bool
		Empty()
		{
			//return (seeds.empty() && seedsvecs.empty() && seedsmags.empty());
			return (seeds.empty() && seedsvecs.empty());
		}

		///@param std::string file:file with variables to populate the seed stacks.
		///Adds a seed to the seed list, including the position, direction and magnitude.
		///Assumes that the coordinates passes are in tissue space.
		void
		setSeeds(std::string file)
		{
			std::ifstream myfile(file.c_str()); 	///open a stream
			string line;
			if(myfile.is_open())
           		{
                   		while (getline(myfile, line))
                   		{
                           		float x, y, z, u, v, w, m;	///read the xyz uvw and m coordinates.
                           		myfile >> x >> y >> z >> u >> v >> w >> m;
					setSeed(x, y, z);
					setSeedVec(u, v, w);
					setSeedMag(m);
                   		}
                   	myfile.close();
	          	} else {
        	                  std::cerr<<"failed" << std::endl;
			}
		}
		
		///Saves the network to a file.
		void
		saveNetwork(std::string name)
		{
			stim::glObj<float> sk1;
			for(int i = 0; i < nt.sizeE(); i++)
			{
				std::vector<float> cm = nt.getEdgeCenterLineMag(i);
                 		std::vector<stim::vec3< float > > ce = nt.getEdgeCenterLine(i);
				sk1.Begin(stim::OBJ_LINE);
				for(int j = 0; j < ce.size(); j++)
				{
					sk1.TexCoord(cm[j]);
					sk1.Vertex(ce[j][0], ce[j][1], ce[j][2]);
				}
				sk1.End();
			}	
			sk1.save(name);
		}

		///Depreciated, but might be reused later()
		///returns a COPY of the entire stim::glObj object.
		stim::glObj<float>
		getNetwork()
		{
			return sk;
		}

		///returns a COPY of the entire stim::glnetwork object.
		stim::glnetwork<T>
		getGLNetwork()
		{
			return nt;
		}
		
		///Function to get back the framebuffer Object attached to the spider.
		///For external access.
		GLuint
		getFB()
		{
			return cylinder_buffID;
		}

//--------------------------------------------------------------------------//
//-----------------------------TEMPORARY METHODS----------------------------//
//--------------------------------------------------------------------------//

		///temporary Method necessary for visualization and testing.
		void
		Update()
		{
			vec3<float> Y(1.0,0.0,0.0);
			if(cos(Y.dot(d))< 0.087){
				Y[0] = 0.0; Y[1] = 1.0;}
			hor = stim::rect<float>(m, p, d.norm(),
				((Y.cross(d)).cross(d)).norm());
			ver = stim::rect<float>(m, p, d.norm(),
				 hor.n());
		}


		int
		Step()
		{
			#ifdef DEBUG
			std::cerr << "Took a step" << std::endl;
			#endif
			Bind(direction_texID, direction_buffID, numSamples, n_pixels);
			CHECK_OPENGL_ERROR
				findOptimalDirection();
			Unbind();
			Bind(position_texID, position_buffID, numSamplesPos, n_pixels);
				findOptimalPosition();
			Unbind();
			Bind(radius_texID, radius_buffID, numSamplesMag, n_pixels);
				findOptimalRadius();
			Unbind();
			CHECK_OPENGL_ERROR

			return current_cost;
		}


		void
		printTransform()
		{
			std::cout << cT << std::endl;
		}


//--------------------------------------------------------------------------//
//-----------------------------EXPERIMENTAL METHODS-------------------------//
//--------------------------------------------------------------------------//

		void
		MonteCarloDirectionVectors(int nSamples, float solidAngle = stim::TAU)
		{
//			float PHI[2];//, Z[2];//, range;
//			PHI[0] = asin(solidAngle/2);
//			PHI[1] = asin(0);
			
//			Z[0] = cos(PHI[0]);
//			Z[1] = cos(PHI[1]);
			
//			range = Z[0] - Z[1];

			std::vector<stim::vec3<float> > vecsUni;
			for(int i = 0; i < numSamplesPos; i++)
			{
				stim::vec3<float> a(uniformRandom()*0.8, uniformRandom()*0.8, 0.0);
				a[0] = a[0]-0.4;
				a[1] = a[1]-0.4;
				vecsUni.push_back(a);
			}

			stringstream name;
			for(int i = 0; i < numSamplesPos; i++)
				name << vecsUni[i].str() << std::endl;
			
			std::ofstream outFile;
			outFile.open("New_Pos_Vectors.txt");
			outFile << name.str().c_str();
		}
/*
		void
		DrawCylinder()
		{	 
			 glNewList(dList+3, GL_COMPILE);
			 float z0 = -0.5; float z1 = 0.5; float r0 = 0.5;
      			 float x,y;
			 float xold = 0.5; float yold = 0.0;
			 float step = 360.0/numSamples*32;
			 //float step = 360.0/8.0;
			 glEnable(GL_TEXTURE_3D);
			 glBindTexture(GL_TEXTURE_3D, texID);
			 glBegin(GL_QUAD_STRIP);
			 int j = 0;
			 	for(float i = step; i <= 360.0; i += step)
			 	{
					 x=r0*cos(i*stim::TAU/360.0);
					 y=r0*sin(i*stim::TAU/360.0);
					 glTexCoord3f(x,y,z0); 
					 glVertex2f(0.0, j*6.4+6.4);
//					 glVertex2f(0.0, j*27.0+27.0);
					 glTexCoord3f(x,y,z1); 
					 glVertex2f(16.0, j*6.4+6.4);
//					 glVertex2f(16.0, j*27.0+27.0);
					 glTexCoord3f(xold,yold,z1); 
					 glVertex2f(16.0, j*6.4); 
//					 glVertex2f(16.0, j*27.0); 
					 glTexCoord3f(xold,yold,z0); 
					 glVertex2f(0.0, j*6.4);
//					 glVertex2f(0.0, j*27.0);
					 xold=x;
					 yold=y;
					 j++;
				}
		      	 glEnd();  
			 glEndList();
		}
*/
///need to return the cylinder.
///SOMETHING MIGHT BE GOING ON HERE IN GENERATE BUFFER.
		void
		DrawLongCylinder(int n = 8, int l_template = 8,int l_square = 8)
		{
			int cylLen = cL.size()-1;
			GenerateFBO(n*l_square, cylLen*l_template, cylinder_texID, cylinder_buffID);
			Bind(cylinder_texID, cylinder_buffID, cylLen, l_template*l_square/2.0);
			stim::cylinder<float> cyl(cL, cM);
			std::vector<std::vector<stim::vec3<float> > > p = cyl.getPoints(n);
			for(int i = 0; i < p.size()-1; i++)	///number of circles
			{
				for(int j = 0; j < p[0].size()-1; j++)		///points in the circle
				{
					glBegin(GL_QUADS);
						glTexCoord3f(p[i][j][0], p[i][j][1], p[i][j][2]);
						glVertex2f(j*l_square,  i*(float)l_template); 

						glTexCoord3f(p[i][j+1][0], p[i][j+1][1], p[i][j+1][2]);
						glVertex2f(j*l_square+l_square, i*(float)l_template); 

						glTexCoord3f(p[i+1][j+1][0], p[i+1][j+1][1], p[i+1][j+1][2]);
						glVertex2f(j*l_square+l_square, i*(float)l_template+(float)l_template); 

						glTexCoord3f(p[i+1][j][0], p[i+1][j][1], p[i+1][j][2]);
						glVertex2f(j*l_square,i*(float)l_template+(float)l_template); 
					glEnd();
				}
			}
			Unbind();
		}
		

		///@param min_cost the cost value used for tracing
		///traces out each seedpoint in the seeds queue to completion in both directions.
		void
		trace(int min_cost)
		{	
			stim::vec3<float> curSeed; 
			stim::vec3<float> curSeedVec;			
			float curSeedMag;
			while(!Empty())
			{
				//clear the currently traced line and start a new one.
				curSeed = seeds.top();
				curSeedVec = seedsvecs.top();
				curSeedMag = seedsmags.top();
				seeds.pop();
				seedsvecs.pop();
				seedsmags.pop();
				setPosition(curSeed);
				setDirection(curSeedVec);
				setMagnitude(curSeedMag);

				#ifdef DEBUG
					std::cout << "The new seed " << curSeed << curSeedVec << curSeedMag << std::endl;
				#endif
				
//			Bind(direction_texID, direction_buffID, numSamples, n_pixels);
//			CHECK_OPENGL_ERROR
//				findOptimalDirection();
//			Unbind();
//THIS IS EXPERIMENTAL
			Bind(radius_texID, radius_buffID, numSamplesMag, n_pixels);
				findOptimalRadius();
			Unbind();
//THIS IS EXPERIMENTAL

//				cL.push_back(curSeed);
//				cM.push_back(curSeedMag);
//				cD.push_back(curSeedMag);
				traceLine(p, m, min_cost);
			}
		}

		int
		selectObject(stim::vec3<float> loc, stim::vec3<float> dir, float mag) 
		{
		//Define the varibles and turn on Selection Mode
			
			#ifdef TIMING
				gpuStartTimer();
			#endif

			GLuint selectBuf[2048];			///size of the selection buffer in bytes.
			GLint hits;				///hit fibers
			glSelectBuffer(2048, selectBuf);	///bind the selection mode to the selection buffer.
			glDisable(GL_CULL_FACE);		///Disable cullFace
			(void) glRenderMode(GL_SELECT);		///initialize GL select mode.
		//Init Names stack

			glInitNames();				///Initialize the naming array.
			glPushName(1);				///Push a single name to the stack.

			CHECK_OPENGL_ERROR
		//What would that vessel see in front of it.
				camSel.setPosition(loc);		///Set the viewing camera
				camSel.setFocalDistance(mag/stepsize);	///Set how far the fiber looks forward.
				camSel.LookAt((loc[0]+dir[0]*mag/stepsize),
					 (loc[1]+dir[1]*mag/stepsize),
					 (loc[2]+dir[2]*mag/stepsize)); ///Set the look direction
				ps  = camSel.getPosition();		///get all the necessary rotation variable for openGL
				ups = camSel.getUp();
				ds  = camSel.getLookAt();
				glMatrixMode(GL_PROJECTION);		///Push the projection matrix.
				glPushMatrix();				///Reset the current projection matrix
				glLoadIdentity();
				glOrtho(-mag/stepsize/2.0, mag/stepsize/2.0, -mag/stepsize/2.0, mag/stepsize/2.0, 0.0, mag/stepsize/2.0);			///Finalize the look paramenters
				glMatrixMode(GL_MODELVIEW);
				glPushMatrix();
				glLoadIdentity();
				
				CHECK_OPENGL_ERROR
				gluLookAt(ps[0], ps[1], ps[2],
					 ds[0], ds[1], ds[2],
					 ups[0], ups[1], ups[2]);
				///Set the look at distance
//				sk.Render();	///Render the network
				nt.Render();								

				CHECK_OPENGL_ERROR


//				glLoadName((int) sk.numL());		///Load all the names
				glLoadName(nt.sizeE());

//				sk.RenderLine(cL);			///Render the current line.
				nt.RenderLine(cL);	

//				glPopName();
				glFlush();				///Flush the buffer

				glMatrixMode(GL_PROJECTION);
				glPopMatrix();
				glMatrixMode(GL_MODELVIEW);
				CHECK_OPENGL_ERROR
				glPopMatrix();				///clear the vis matrices and pop the matrix

		//	glEnable(GL_CULL_FACE);
			hits = glRenderMode(GL_RENDER);			///Check for hits.
			int found_hits = processHits(hits, selectBuf);	///Process the hits.
			#ifdef TIMING
				hit_time += gpuStopTimer();
			#endif

			return found_hits;				///return whether we hit something or not.
		}

		//Given a size of the array (hits) and the memory holding it (buffer)
		//returns whether a hit tool place or not.
		int
		processHits(GLint hits, GLuint buffer[])
		{
			GLuint *ptr;		///pointer to the detection buffer
			ptr = (GLuint *) buffer;
			ptr++;
			ptr++; //Skip the minimum depth value.  
			ptr++; //Skip the maximum depth value.

			
			if(hits == 0)
			{
				return -1;
			}
			else
			{
//				printf ("%u ", *ptr);
				return *ptr;
			}
		}

		void
		clearCurrent()
		{
			cL.clear();
			cM.clear();
		}
	

		void
		addToNetwork(std::vector<stim::vec3<float> > L, std::vector<float > M, stim::vec3<float> spos, stim::vec3<float> sdir, float smag)
		{
			//if the fiber is longer than 2 steps (the number it takes to diverge)
			if(L.size() > 3)
			{	
				//if we did not hit a fiber
				if(last_fiber == -1)
				{
					spos[0] = spos[0]-sdir[0]*smag;
					spos[1] = spos[1]-sdir[1]*smag;
					spos[2] = spos[2]-sdir[2]*smag;
					int h = selectObject(spos, -sdir, smag);
					//did we start with a fiber?
					if(h != -1 && h < nt.sizeE())
						nt.addEdge(L, M, h, -1);
					else
						nt.addEdge(L, M, -1, -1);
				}
				//if we hit a fiber?
				else if(last_fiber != -1)
				{
					nt.addEdge(L, M, -1, last_fiber);
					spos[0] = spos[0]-sdir[0]*smag;
					spos[1] = spos[1]-sdir[1]*smag;
					spos[2] = spos[2]-sdir[2]*smag;
					int h = selectObject(spos, -sdir, smag);
					//did start with a fiber?
					if(h != -1 && h < nt.sizeE()){	
			//			std::cout << "got here double" << smag.str() << std::endl;
						nt.addEdge(L, M, h, last_fiber);	
					}
					else
					{
					 nt.addEdge(L, M, -1, -1);
					}
				}
			}		

			#ifdef DEBUG
				iter++;
			#endif
		}
/*
		void
		addToNetwork(std::vector<stim::vec3<float> > L, std::vector<float > M)
		{
			if(L.size() > 3)
			{
				sk.Begin(stim::OBJ_LINE);
				for(int i = 0; i < L.size(); i++)
				{
					sk.TexCoord(M[i]);
					sk.Vertex(L[i][0], L[i][1], L[i][2]);
				}
				sk.End();

				nt.addEdge(L,M);
				#ifdef DEBUG
					iter++;
				#endif
			}
		}
*/

		void
		printSizes()
		{
			std::cout << nt.sizeE() << " edges " << std::endl;
			std::cout << nt.sizeV() << " nodes " << std::endl;
		}

		void
		traceLine(stim::vec3<float> pos, float mag, int min_cost)
		{
			//starting (seed) position and magnitude.
			last_fiber = -1;
			cL.clear();
			cM.clear();
			cD.clear();

			stim::vec3<float> spos = getPosition();
			stim::vec3<float> sdir = getDirection();
			float smag = getMagnitude();

			setPosition(pos);
			setMagnitude(mag);

			cL.push_back(p);
			cD.push_back(d);
			cM.push_back(m);
//			stim::vec3<float> spos = getPosition();
//			float smag = getMagnitude();
//			stim::vec3<float> sdir = getDirection();	

//			Bind();
//			sk.Begin(stim::OBJ_LINE);


			//sk.createFromSelf(GL_SELECT);
			nt.createFromSelf(GL_SELECT);
			int h;
			bool started = false;
			bool running = true;
			stim::vec3<float> size(S[0]*R[0], S[1]*R[1], S[2]*R[2]);
			while(running)
			{
				int cost = Step();
				if (cost > min_cost){
					running = false;
					branchDetection2();
					addToNetwork(cL, cM, spos, sdir, smag);
					#ifdef DEBUG
					std::cerr << "the cost of " << cost << " > " << min_cost << std::endl;
					#endif
					break;
				} else {
					//Have we found the edge of the map?
					pos = getPosition();
					if(p[0] > size[0] || p[1] > size[1]
					 || p[2] > size[2] || p[0] < 0
					 || p[1] < 0 || p[2] < 0)
					{
						running = false;
						branchDetection2();
				//		addToNetwork(cL, cM);
						addToNetwork(cL, cM, spos, sdir, smag);
						#ifdef DEBUG
						std::cerr << "I hit and edge" << std::endl;
						#endif
						break;
					}
					//If this is the first step in the trace,
					// save the direction
					//(to be used later to trace the fiber in the opposite direction)
					if(started == false){
						rev = -getDirection();
						started = true;
					}
					//Has the template size gotten unreasonable?
					mag = getMagnitude();
					if(m > 75 || m < 1){
						running = false;
						branchDetection2();
				//		addToNetwork(cL, cM);
						addToNetwork(cL, cM, spos, sdir, smag);
						#ifdef DEBUG
						std::cerr << "The templates are too big" << std::endl;
						#endif
						break;
					}
					else
					{
						h = selectObject(p, getDirection(), m);
						//Have we hit something previously traced?
						if(h != -1){
							#ifdef DEBUG
							std::cerr << "I hit the fiber " << h << std::endl;
							#endif
							last_fiber = h;
							running = false;
							branchDetection2();
						//	addToNetwork(cL, cM);
							addToNetwork(cL, cM, spos, sdir, smag);
							break;
						}
						else {  
							cL.push_back(p);
							cD.push_back(d);
							cM.push_back(m);
//							Unbind();
							CHECK_OPENGL_ERROR
						}
				 	}
                 		}
         		}
				#ifdef DEBUG
				std::cout << "I broke out!" << std::endl;
				#endif
		}
};
}
#endif