vote_atomic.cuh 3.67 KB
#ifndef STIM_CUDA_VOTE_ATOMIC_H
#define STIM_CUDA_VOTE_ATOMIC_H

# include <iostream>
# include <cuda.h>
#include <stim/cuda/cudatools.h>
#include <stim/cuda/sharedmem.cuh>
#include "cpyToshare.cuh"

namespace stim{
	namespace cuda{

		// this kernel calculates the vote value by adding up the gradient magnitudes of every voter that this pixel is located in their voting area
		template<typename T>
		__global__ void cuda_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax, int x, int y){

			
			// calculate the 2D coordinates for this current thread.
			int xi = blockIdx.x * blockDim.x + threadIdx.x;
			int yi = blockIdx.y * blockDim.y + threadIdx.y;
			// convert 2D coordinates to 1D
			int i = yi * x + xi;

			// calculate the voting direction based on the grtadient direction
			float theta = gpuGrad[2*i];
			//calculate the amount of vote for the voter
			float mag = gpuGrad[2*i + 1];
						
			// compute the size of window which will be checked for finding the proper voters for this pixel
			int x_table = 2*rmax +1;
			int rmax_sq = rmax * rmax;
			if(xi < x && yi < y){
			//for every line (along y)
				for(int yr = -rmax; yr <= rmax; yr++){					
					for(int xr = -rmax; xr <= rmax; xr++){
						if ((yi+yr)>=0 && (yi+yr)<y && (xi+xr)>=0 && (xi+xr)<x){
					
							//find the location of the current pixel in the atan2 table
							unsigned int ind_t = (rmax - yr) * x_table + rmax - xr;

							// calculate the angle between the voter and the current pixel in x and y directions
							float atan_angle = gpuTable[ind_t];
						
							// check if the current pixel is located in the voting area of this voter.
							if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) <phi)){
								// calculate the 1D index for the current pixel in global memory
								unsigned int ind_g = (yi+yr)*x + (xi+xr);
								atomicAdd(&gpuVote[ind_g], mag);
							
								}
						}
					}
				}	
			}
		}

		template<typename T>
		void gpu_vote(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){

							
			unsigned int max_threads = stim::maxThreadsPerBlock();
			dim3 threads(max_threads, 1);
			dim3 blocks(x/threads.x + (x %threads.x == 0 ? 0:1) , y);
					
			// specify  share memory
			//unsigned int share_bytes = (2*rmax + threads.x)*(1)*2*4;
			
			//call the kernel to do the voting
			cuda_vote <<< blocks, threads>>>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);

		}


		template<typename T>
		void cpu_vote(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){

			//calculate the number of bytes in the array
			unsigned int bytes = x * y * sizeof(T);

			//calculate the number of bytes in the atan2 table
			unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T);

			//allocate space on the GPU for the Vote Image
			T* gpuVote;
			cudaMalloc(&gpuVote, bytes);		

			//allocate space on the GPU for the input Gradient image
			T* gpuGrad;
			HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2));

			//copy the Gradient Magnitude data to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice));

			//allocate space on the GPU for the atan2 table
			T* gpuTable;
			HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table));

			//copy the atan2 values to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice));
						
			//call the GPU version of the vote calculation function
			gpu_vote<T>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
							
			//copy the Vote Data back to the CPU
			cudaMemcpy(cpuVote, gpuVote, bytes, cudaMemcpyDeviceToHost) ;

			//free allocated memory
			cudaFree(gpuTable);
			cudaFree(gpuVote);
			cudaFree(gpuGrad);
		}
		
	}
}

#endif