rect.h
4.65 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#ifndef RTS_RECT_H
#define RTS_RECT_H
//enable CUDA_CALLABLE macro
#include <stim/cuda/callable.h>
#include <stim/math/vector.h>
#include <stim/math/triangle.h>
#include <stim/math/quaternion.h>
#include <iostream>
#include <iomanip>
#include <algorithm>
namespace stim{
//template for a rectangle class in ND space
template <class T>
struct rect
{
/*
^ O
|
|
Y C
|
|
O---------X--------->
*/
private:
stim::vec<T> C;
stim::vec<T> X;
stim::vec<T> Y;
CUDA_CALLABLE void scale(T factor){
X *= factor;
Y *= factor;
}
CUDA_CALLABLE void normal(vec<T> n){ //orient the rectangle along the specified normal
n = n.norm(); //normalize, just in case
vec<T> n_current = X.cross(Y).norm(); //compute the current normal
quaternion<T> q; //create a quaternion
q.CreateRotation(n_current, n); //initialize a rotation from n_current to n
//apply the quaternion to the vectors and position
X = q.toMatrix3() * X;
Y = q.toMatrix3() * Y;
}
CUDA_CALLABLE void init(){
C = vec<T>(0, 0, 0);
X = vec<T>(1, 0, 0);
Y = vec<T>(0, 1, 0);
}
public:
CUDA_CALLABLE rect(){
init();
}
//create a rectangle given a size and position
CUDA_CALLABLE rect(T size, T z_pos = (T)0){
init(); //use the default setup
scale(size); //scale the rectangle
C[2] = z_pos;
}
//create a rectangle from a center point, normal, and size
CUDA_CALLABLE rect(vec<T> c, vec<T> n = vec<T>(0, 0, 1)){
init(); //start with the default setting
C = c;
normal(n); //orient
}
CUDA_CALLABLE rect(vec<T> center, vec<T> directionX, vec<T> directionY )
{
C = center;
X = directionX;
Y = directionY;
}
CUDA_CALLABLE rect(T size, vec<T> center, vec<T> directionX, vec<T> directionY )
{
C = center;
X = directionX;
Y = directionY;
scale(size);
}
CUDA_CALLABLE rect(vec<T> size, vec<T> center, vec<T> directionX, vec<T> directionY )
{
C = center;
X = directionX;
Y = directionY;
scale(size[0], size[1]);
}
CUDA_CALLABLE void scale(T factor1, T factor2){
X *= factor1;
Y *= factor2;
}
//boolean comparison
bool operator==(const rect<T> & rhs)
{
if(C == rhs.C && X == rhs.X && Y == rhs.Y)
return true;
else
return false;
}
/*******************************************
Return the normal for the rect
*******************************************/
CUDA_CALLABLE stim::vec<T> n()
{
return (X.cross(Y)).norm();
}
//get the world space value given the planar coordinates a, b in [0, 1]
CUDA_CALLABLE stim::vec<T> p(T a, T b)
{
stim::vec<T> result;
//given the two parameters a, b = [0 1], returns the position in world space
vec<T> A = C - X * (T)0.5 - Y * (T)0.5;
result = A + X * a + Y * b;
return result;
}
//parenthesis operator returns the world space given rectangular coordinates a and b in [0 1]
CUDA_CALLABLE stim::vec<T> operator()(T a, T b)
{
return p(a, b);
}
std::string str()
{
std::stringstream ss;
vec<T> A = C - X * (T)0.5 - Y * (T)0.5;
ss<<std::left<<"B="<<std::setfill('-')<<std::setw(20)<<A + Y<<">"<<"C="<<A + Y + X<<std::endl;
ss<<std::setfill(' ')<<std::setw(23)<<"|"<<"|"<<std::endl<<std::setw(23)<<"|"<<"|"<<std::endl;
ss<<std::left<<"A="<<std::setfill('-')<<std::setw(20)<<A<<">"<<"D="<<A + X;
return ss.str();
}
//scales the rectangle by a value rhs
CUDA_CALLABLE rect<T> operator*(T rhs)
{
//scales the plane by a scalar value
//create the new rectangle
rect<T> result = *this;
result.scale(rhs);
return result;
}
//computes the distance between the specified point and this rectangle
CUDA_CALLABLE T dist(vec<T> p)
{
//compute the distance between a point and this rect
vec<T> A = C - X * (T)0.5 - Y * (T)0.5;
//first break the rect up into two triangles
triangle<T> T0(A, A+X, A+Y);
triangle<T> T1(A+X+Y, A+X, A+Y);
T d0 = T0.dist(p);
T d1 = T1.dist(p);
if(d0 < d1)
return d0;
else
return d1;
}
CUDA_CALLABLE T dist_max(vec<T> p)
{
vec<T> A = C - X * (T)0.5 - Y * (T)0.5;
T da = (A - p).len();
T db = (A+X - p).len();
T dc = (A+Y - p).len();
T dd = (A+X+Y - p).len();
return std::max( da, std::max(db, std::max(dc, dd) ) );
}
};
} //end namespace rts
template <typename T, int N>
std::ostream& operator<<(std::ostream& os, stim::rect<T> R)
{
os<<R.str();
return os;
}
#endif