envi.h 80.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
#ifndef STIM_ENVI_H
#define STIM_ENVI_H

#include <stim/envi/envi_header.h>
#include <stim/envi/bsq.h>
#include <stim/envi/bip.h>
#include <stim/envi/bil.h>
#include <stim/math/fd_coefficients.h>
#include <stim/parser/filename.h>
#include <stim/util/filesize.h>
#include <iostream>
#include <fstream>
//#include "../image/image.h"

namespace stim{

/** This class implements reading of ENVI hyperspectral files. These files can be stored in multiple orientations
	(including BSQ, BIP, and BIL) in order to optimize streaming speed depending on applications. Basic ENVI
	files are stored on disk as a large binary file with a corresponding header. Code for reading and processing
	ENVI header files is in the envi_header class.
*/
class envi{

	void* file;		//void pointer to the relevant file reader (bip, bsq, or bil - with appropriate data type)
	std::string fname;					//file name used for repeated opening and closing

	//allocate sufficient space for a spectrum based on the data type and number of bands
	void* alloc_array(size_t len){
		switch(header.data_type){
		case envi_header::int8:
			return malloc(len);
		case envi_header::int16:
		case envi_header::uint16:
			return malloc(2 * len);
		case envi_header::int32:
		case envi_header::uint32:
		case envi_header::float32:
			return malloc(4 * len);
		case envi_header::int64:
		case envi_header::uint64:
		case envi_header::float64:
		case envi_header::complex32:
			return malloc(8 * len);
		case envi_header::complex64:
			return malloc(16 * len);
		default:
			std::cout<<"ERROR stim::envi data type not recognized for spectral allocation"<<std::endl;
			exit(1);
		}
	}

	//cast a value to DEST type from SRC type
	template<typename DST, typename SRC>
	inline void cast(DST* dst, SRC* src){
		(*dst) = (DST)(*src);
	}

	//cast an array from type SRC to type DEST
	template<typename DST, typename SRC>
	inline void cast(DST* dst, SRC* src, size_t len){
		for(size_t i = 0; i < len; i++)
			cast(&dst[i], &src[i]);
	}
	
public:
	envi_header header;

	
	/// Default constructor
	envi(){
		file = NULL;				//set the file pointer to NULL
	}

	envi(std::string filename, std::string headername) : envi(){
		header.load(headername);

		fname = filename;					//save the filename

		allocate();
	}
	//used to test if the current ENVI file is valid
	operator bool(){
		if (header.interleave == envi_header::BSQ) {		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->is_open();
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->is_open();
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else if (header.interleave == envi_header::BIL) {		//if the infile is bil file
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->is_open();
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->is_open();
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else if (header.interleave == envi_header::BIP) {		//if the infile is bip file
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->is_open();
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->is_open();
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}
		else {
			std::cout << "ERROR: unidentified file type" << std::endl;
			exit(1);
		}
		return false;
	}

	//test to determine if the specified file is an ENVI file
	static bool is_envi(std::string fname, std::string hname = ""){
		stim::filename data_file(fname);
		stim::filename header_file;
		if(hname == ""){								//if the header isn't provided
			header_file = data_file;					//assume that it's the same name as the data file, with a .hdr extension
			header_file = header_file.extension("hdr");
		}
		else header_file = hname;						//otherwise load the passed header

		stim::envi_header H;
		if(H.load(header_file) == false)				//load the header file, if it doesn't load return false
			return false;
		size_t targetBytes = H.data_bytes();			//get the number of bytes that SHOULD be in the data file
		size_t bytes = stim::file_size(fname);
		if(bytes != targetBytes) return false;			//if the data doesn't match the header, return false
		return true;									//otherwise everything looks fine

	}
	

	void* malloc_spectrum(){
		return alloc_array(header.bands);
	}

	void* malloc_band(){
		return alloc_array(header.samples * header.lines);
	}

	void set_buffer_frac(double memfrac = 0.5){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				((bsq<float>*)file)->set_buffer_frac(memfrac);
			else if(header.data_type == envi_header::float64)
				((bsq<double>*)file)->set_buffer_frac(memfrac);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				((bil<float>*)file)->set_buffer_frac(memfrac);
			else if(header.data_type == envi_header::float64)
				((bil<double>*)file)->set_buffer_frac(memfrac);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->set_buffer_frac(memfrac);
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->set_buffer_frac(memfrac);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
	}

	void set_buffer_raw(size_t bytes){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				((bsq<float>*)file)->set_buffer_raw(bytes);
			else if(header.data_type == envi_header::float64)
				((bsq<double>*)file)->set_buffer_raw(bytes);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				((bil<float>*)file)->set_buffer_raw(bytes);
			else if(header.data_type == envi_header::float64)
				((bil<double>*)file)->set_buffer_raw(bytes);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->set_buffer_raw(bytes);
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->set_buffer_raw(bytes);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
	}

	/// Returns the size of the data type in bytes
	unsigned int type_size(){
		if(header.data_type == envi_header::float32) return 4;
		if(header.data_type == envi_header::float64) return 8;

		exit(1);
	}

	size_t X(){ return header.samples; }
	size_t Y(){ return header.lines; }
	size_t Z(){ return header.bands; }
	size_t B(){ return Z();	}

	/// Return the size of the data set in bytes
	size_t bytes(){
		return X() * Y() * Z() * type_size();
	}

	/// Returns the progress of the current processing operation as a percentage
	void reset_progress(){

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				((bsq<float>*)file)->reset_progress();
			else if(header.data_type == envi_header::float64)
				((bsq<double>*)file)->reset_progress();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				((bil<float>*)file)->reset_progress();
			else if(header.data_type == envi_header::float64)
				((bil<double>*)file)->reset_progress();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->reset_progress();
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->reset_progress();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
	}

	/// Returns the progress of the current processing operation as a percentage
	double progress(){

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->get_progress();
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->get_progress();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->get_progress();
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->get_progress();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->get_progress();
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->get_progress();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
		}
		return 0;
	}

	/// Returns the progress of the current processing operation as a percentage
	size_t data_rate(){

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->get_data_rate();
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->get_data_rate();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->get_data_rate();
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->get_data_rate();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->get_data_rate();
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->get_data_rate();
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
		}
		return 0;
	}

	/// Allocate memory for a new ENVI file based on the current interleave format (BIP, BIL, BSQ) and data type.
	void allocate(){

		file = NULL;	//set file to a NULL pointer

		if(header.interleave == envi_header::BSQ){
			if(header.data_type ==envi_header::float32)
				file = new bsq<float>();
			else if(header.data_type == envi_header::float64)
				file = new bsq<double>();
		}
		else if(header.interleave == envi_header::BIP){
			if(header.data_type ==envi_header::float32)
				file = new bip<float>();
			else if(header.data_type == envi_header::float64)
				file = new bip<double>();
		}
		else if(header.interleave == envi_header::BIL){
			if(header.data_type ==envi_header::float32)
				file = new bil<float>();
			else if(header.data_type == envi_header::float64)
				file = new bil<double>();
		}

	}

	/// Open a previously opened ENVI file
	bool open(stim::iotype io = stim::io_in){

		//load the file
		if(header.interleave == envi_header::BSQ) {		//if the infile is bsq file
			if(header.data_type == envi_header::float32) {
				return ((bsq<float>*)file)->open(fname, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else if(header.data_type == envi_header::float64) {
				return ((bsq<double>*)file)->open(fname, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else
			{
				std::cout << "ERROR: The specified data format (" << header.data_type << ") is not supported" << std::endl;
				return false;
			}
		}

		else if(header.interleave == envi_header::BIL) {		//if the infile is bil file
			if(header.data_type == envi_header::float32) {
				return ((bil<float>*)file)->open(fname, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else if(header.data_type == envi_header::float64) {
				return ((bil<double>*)file)->open(fname, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			{
				std::cout << "ERROR: The specified data format (" << header.data_type << ") is not supported" << std::endl;
				return false;
			}
		}

		else if(header.interleave == envi_header::BIP) {		//if the infile is bip file
			if(header.data_type == envi_header::float32) {
				return ((bip<float>*)file)->open(fname, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else if(header.data_type == envi_header::float64) {
				return ((bip<double>*)file)->open(fname, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			{
				std::cout << "ERROR: The specified data format (" << header.data_type << ") is not supported" << std::endl;
				return false;
			}
		}

		return true;


	}

	/// Open an Agilent binary file as an ENVI stream
	bool open_agilent(std::string filename){
		fname = filename;												//store the file name

		//Open the file temporarily to get the header information
		FILE* f = fopen(filename.c_str(), "r");							//open the binary file for reading
		if(f == NULL) return false;										//return false if no file is opened

		fseek(f, 9, SEEK_SET);											//seek to the number of bands
		short b;														//allocate space for the number of bands
		size_t nread = fread(&b, sizeof(short), 1, f);					//read the number of bands
		if(nread != 1){
			std::cout<<"Error reading band number from Agilent file."<<std::endl;
			exit(1);
		}
		fseek(f, 13, SEEK_CUR);											//skip the the x and y dimensions
		short x, y;
		nread = fread(&x, sizeof(short), 1, f);									//read the image x and y size
		if(nread != 1){
			std::cout<<"Error reading X dimension from Agilent file."<<std::endl;
			exit(1);
		}
		nread = fread(&y, sizeof(short), 1, f);
		if(nread != 1){
			std::cout<<"Error reading Y dimension from Agilent file."<<std::endl;
			exit(1);
		}
		fclose(f);														//close the file

		//store the information from the Agilent header in the ENVI header
		header.bands = b;
		header.samples = x;
		header.lines = y;
		header.data_type = envi_header::float32;						//all values are 32-bit floats
		header.header_offset = 1020;									//number of bytes in an Agilent binary header
		header.interleave = envi_header::BSQ;							//all Agilent binary files are BSQ

		allocate();														//allocate the streaming file object
		open();															//open the file for streaming

		return true;
	}

	/// Open an existing ENVI file given the filename and a header structure

	/// @param filename is the name of the ENVI binary file
	/// @param header is an ENVI header structure
	bool open(std::string filename, stim::envi_header h, stim::iotype io = stim::io_in){
		

		header = h;							//store the header
		fname = filename;					//save the filename

		allocate();

		return open(io);						//open the ENVI file;
		

	}

	/// Open an existing ENVI file given the file and header names.

	/// @param filename is the name of the ENVI binary file
	/// @param headername is the name of the ENVI header file
	bool open(std::string filename, std::string headername, stim::iotype io = stim::io_in){

		//allocate memory
		//allocate();

		stim::envi_header h;
		if (!h.load(headername)) {
			std::cout << "Error loading header file: " << headername << std::endl;
			return false;
		}

		//load the header
		//header.load(headername);

		return open(filename, h, io);
	}

	/// Normalize a hyperspectral ENVI file given a band number and threshold.

	/// @param outfile is the name of the normalized file to be output
	/// @param band is the band label to be output
	/// @param threshold is a threshold value specified such that normalization will only be done to values in the band > threshold (preventing division by small numbers)
	bool ratio(std::string outfile, double band, unsigned char* mask = NULL, bool PROGRESS = false){
		header.save(outfile + ".hdr");
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->ratio(outfile, band, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->ratio(outfile,band, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->ratio(outfile, band, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->ratio(outfile,band, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->ratio(outfile, band, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->ratio(outfile,band, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Perform vector normalization on the ENVI image
	void normalize(std::string outfile, unsigned char* mask = NULL, bool PROGRESS = false){
		header.save(outfile + ".hdr");
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				((bsq<float>*)file)->normalize(outfile, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bsq<double>*)file)->normalize(outfile, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				((bil<float>*)file)->normalize(outfile, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bil<double>*)file)->normalize(outfile, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->normalize(outfile, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->normalize(outfile, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
	}

	bool select(std::string outfile, std::vector<double> bandlist, unsigned char* MASK = NULL, bool PROGRESS = false) {
		stim::envi_header new_header = header;					//copy all of the data from the current header file to the new one
		new_header.bands = bandlist.size();						//the number of bands in the new file is equal to the number of bands provided by the user
		new_header.wavelength = bandlist;						//the wavelength values in the output file are the same as those specified by the user
		new_header.band_names.empty();							//no band names will be provided in the output file
		new_header.save(outfile + ".hdr");						//save the output header file

		if (header.interleave == envi_header::BSQ) {		//if the infile is bip file
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->select(outfile, bandlist, MASK, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->select(outfile, bandlist, MASK, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}
		else if (header.interleave == envi_header::BIL) {		//if the infile is bip file
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->select(outfile, bandlist, MASK, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->select(outfile, bandlist, MASK, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}
		else if (header.interleave == envi_header::BIP) {		//if the infile is bip file
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->select(outfile, bandlist, MASK, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->select(outfile, bandlist, MASK, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		return false;
	}

	/// Performs piecewise linear baseline correction of a hyperspectral file/

	/// @param outfile is the file name for the baseline corrected output
	/// @param w is a list of band labels to serve as baseline points (zero values)
	bool baseline(std::string outfile, std::vector<double> w, unsigned char* mask = NULL, bool PROGRESS = false){
		header.save(outfile + ".hdr");
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->baseline(outfile, w, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->baseline(outfile,w, mask, PROGRESS);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->baseline(outfile, w, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->baseline(outfile, w, mask, PROGRESS);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->baseline(outfile, w, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->baseline(outfile, w, mask, PROGRESS);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
	}

	/// Project an array of coefficients onto a basis matrix

	void project(std::string outfile, double* center, double* basis, size_t M, std::vector<double> bands, unsigned char* mask, int cuda_device = 0, bool PROGRESS = false) {
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			std::cout<<"ERROR: BSQ projection not supported"<<std::endl;
			exit(1);
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			std::cout<<"ERROR: BIL projection not supported"<<std::endl;
			exit(1);
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->project(outfile, center, basis, M, mask, cuda_device, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->project(outfile, center, basis, M, mask, cuda_device, PROGRESS);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		stim::envi_header out_hdr = header;							
		out_hdr.bands = M;											//set the number of bands in the output header
		out_hdr.wavelength = bands;
		out_hdr.band_names.clear();
		out_hdr.save(outfile + ".hdr");								//save the output header
	}

	void inverse(std::string outfile, double* center, double* basis, unsigned long long B, unsigned long long C = 0, bool PROGRESS = false){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			std::cout<<"ERROR: BSQ projection not supported"<<std::endl;
			exit(1);
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			std::cout<<"ERROR: BIL projection not supported"<<std::endl;
			exit(1);
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->inverse(outfile, center, basis, B, C, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->inverse(outfile, center, basis, B, C, PROGRESS);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		stim::envi_header out_hdr = header;							
		out_hdr.bands = B;											//set the number of bands in the output header
		out_hdr.save(outfile + ".hdr");								//save the output header
	}

	/// Converts ENVI files between interleave types (BSQ, BIL, and BIP)

	/// @param outfile is the file name for the converted output
	/// @param interleave is the interleave format for the destination file
	bool convert(std::string outfile, stim::envi_header::interleaveType interleave, bool PROGRESS = false, bool VERBOSE = false, bool OPTIMIZATION = true){
		
		if(header.interleave == envi_header::BSQ){			//if the infile is bsq file

			if(header.data_type ==envi_header::float32){		//ERROR
				if(interleave == envi_header::BSQ){
					std::cout<<"ERROR:  is already BSQ file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)			//convert BSQ -> BIL
					((bsq<float>*)file)->bil(outfile, PROGRESS, VERBOSE, OPTIMIZATION);
				else if(interleave == envi_header::BIP){			//ERROR
					//std::cout<<"ERROR: conversion from BSQ to BIP isn't practical; use BSQ->BIL->BIP instead"<<std::endl;
					((bsq<float>*)file)->bip(outfile, PROGRESS, VERBOSE, OPTIMIZATION);
					//exit(1);
				}
			}

			else if(header.data_type == envi_header::float64){		//if the data type is float
				if(interleave == envi_header::BSQ){							//ERROR
					std::cout<<"ERROR:  is already BSQ file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)					//convert BSQ -> BIL
					((bsq<double>*)file)->bil(outfile, PROGRESS, OPTIMIZATION);
				else if(interleave == envi_header::BIP){					//ERROR
					//std::cout<<"ERROR: conversion from BSQ to BIP isn't practical; use BSQ->BIL->BIP instead"<<std::endl;
					((bsq<double>*)file)->bip(outfile, PROGRESS, OPTIMIZATION);
					//exit(1);
				}
			}

			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIL){

			if(header.data_type ==envi_header::float32){						//ERROR
				if(interleave == envi_header::BIL){
					std::cout<<"ERROR:  is already BIL file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BSQ)							//BIL -> BSQ
					((bil<float>*)file)->bsq(outfile, PROGRESS);
				else if(interleave == envi_header::BIP)							//BIL -> BIP
					((bil<float>*)file)->bip(outfile, PROGRESS);
			}

			else if(header.data_type == envi_header::float64){
				if(interleave == envi_header::BIL){								//ERROR
					std::cout<<"ERROR:  is already BIL file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BSQ)							//BIL -> BSQ
					((bil<double>*)file)->bsq(outfile, PROGRESS);
				else if(interleave == envi_header::BIP)							//BIL -> BIP
					((bil<double>*)file)->bip(outfile, PROGRESS);
			}

			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIP){

			if(header.data_type ==envi_header::float32){
				if(interleave == envi_header::BIP){								//ERROR
					std::cout<<"ERROR:  is already BIP file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)							//BIP -> BIL
					((bip<float>*)file)->bil(outfile, PROGRESS);
				else if(interleave == envi_header::BSQ){						//ERROR
					std::cout<<"ERROR: conversion from BIP to BSQ isn't practical; use BIP->BIL->BSQ instead"<<std::endl;
					//return ((bsq<float>*)file)->bip(outfile, PROGRESS);
					exit(1);
				}
			}

			else if(header.data_type == envi_header::float64){
				if(interleave == envi_header::BIP){								//ERROR
					std::cout<<"ERROR:  is already BIP file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)							//BIP -> BIL
					((bip<double>*)file)->bil(outfile, PROGRESS);
				else if(interleave == envi_header::BSQ){						//ERROR
					std::cout<<"ERROR: conversion from BIP to BSQ isn't practical; use BIP->BIL->BSQ instead"<<std::endl;
					//return ((bsq<float>*)file)->bip(outfile, PROGRESS);
					exit(1);
				}
			}

			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else{
			std::cout<<"ERROR: unidentified interleave type"<<std::endl;
			exit(1);
		}
		stim::envi_header h = header;
		h.interleave = interleave;
		h.save(outfile + ".hdr");

		return true;

	}

	/// Builds a mask from a band image and threshold value

	/// @param mask_band is the label for the band that will be used to build the mask
	/// @param threshold is a value selected such that all band values greater than threshold will have a mask value of 'true'
	/// @param p is memory of size X*Y that will store the resulting mask
	bool build_mask(unsigned char* out_mask, double mask_band, double lower, double upper, unsigned char* mask = NULL, bool PROGRESS = false)	{

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->build_mask(out_mask, mask_band, lower, upper, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->build_mask(out_mask, mask_band, lower, upper, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->build_mask(out_mask, mask_band, lower, upper, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->build_mask(out_mask, mask_band, lower, upper, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->build_mask(out_mask, mask_band, lower, upper, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->build_mask(out_mask, mask_band, lower, upper, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		return false;
	}

	/// Creates a mask with a true value for all pixels that contain finite values
	void mask_finite(unsigned char* out_mask, unsigned char* mask = NULL, bool PROGRESS = false){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				((bsq<float>*)file)->mask_finite(out_mask, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bsq<double>*)file)->mask_finite(out_mask, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				((bil<float>*)file)->mask_finite(out_mask, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bil<double>*)file)->mask_finite(out_mask, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->mask_finite(out_mask, mask, PROGRESS);
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->mask_finite(out_mask, mask, PROGRESS);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}
	}

	/// Applies a mask to the ENVI file.

	/// @param outfile is the name of the resulting masked output file
	/// @param p is memory of size X*Y containing the mask (0 = false, all other values are true)
	void apply_mask(std::string outfile, unsigned char* p, bool PROGRESS = false)
	{
		if (header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->apply_mask(outfile, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->apply_mask(outfile, p, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else if (header.interleave == envi_header::BIL){		//if the infile is bil file
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->apply_mask(outfile, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->apply_mask(outfile, p, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else if (header.interleave == envi_header::BIP){		//if the infile is bip file
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->apply_mask(outfile, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->apply_mask(outfile, p, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else{
			std::cout << "ERROR: unidentified file type" << std::endl;
			exit(1);
		}
		header.save(outfile + ".hdr");
	}

	/// Copies all spectra corresponding to nonzero values of a mask into a pre-allocated matrix of size (P x B)
	///		where P is the number of masked pixels and B is the number of bands. The allocated memory can be accessed
	///		using the following indexing: i = b*P + p
	/// @param matrix is the destination for the pixel data
	/// @param p is the mask
	bool sift(void* matrix, unsigned char* p = NULL, bool PROGRESS = false){

		if (header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->sift((float*)matrix, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->sift((double*)matrix, p, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

		if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->sift((float*)matrix, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->sift((double*)matrix, p, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->sift((float*)matrix, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->sift((double*)matrix, p, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;

	}

	/// Saves in an array only those spectra corresponding to nonzero values of the mask.
	/// @param outfile is the name of the sifted output file
	/// @param p is the mask
	bool sift(std::string outfile, unsigned char* p, bool PROGRESS = false)
	{

		//calculate the number of non-zero values in the mask
		unsigned long long nnz = 0;
		unsigned long long npixels = header.lines * header.samples;
		for(unsigned long long i = 0; i < npixels; i++)
			if( p[i] > 0 ) nnz++;

		//create a new header
		envi_header new_header = header;

		//if a BIL file is sifted, it's saved as a BIP
		if(header.interleave == envi_header::BIL)
			new_header.interleave = envi_header::BIP;

		//set the number of lines to 1 (this is a matrix with 1 line and N samples)
		new_header.lines = 1;
		new_header.samples = nnz;
		new_header.save(outfile + ".hdr");

		if (header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->sift(outfile, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->sift(outfile, p, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else if (header.interleave == envi_header::BIL){		//if the infile is bil file
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->sift(outfile, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->sift(outfile, p, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else if (header.interleave == envi_header::BIP){		//if the infile is bip file
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->sift(outfile, p, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->sift(outfile, p, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else{
			std::cout << "ERROR: unidentified file type" << std::endl;
			exit(1);
		}
		return false;
	}

	bool unsift(std::string outfile, unsigned char* mask, unsigned long long samples, unsigned long long lines, bool PROGRESS = false){

		//create a new header
		envi_header new_header = header;

		//set the number of lines and samples in the output file (that's all that changes)
		new_header.lines = lines;
		new_header.samples = samples;
		new_header.save(outfile + ".hdr");


		if (header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->unsift(outfile, mask, samples, lines, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->unsift(outfile, mask, samples, lines, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else if (header.interleave == envi_header::BIL){		//if the infile is bil file

				std::cout << "ERROR in stim::envi::unsift - BIL files aren't supported yet" << std::endl;
		}

		else if (header.interleave == envi_header::BIP){		//if the infile is bip file

			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->unsift(outfile, mask, samples, lines, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->unsift(outfile, mask, samples, lines, PROGRESS);
			else
				std::cout << "ERROR: unidentified data type" << std::endl;
		}

		else{
			std::cout << "ERROR: unidentified file type" << std::endl;
		}
		return 0;
	}

	/// Compute the ratio of two baseline-corrected peaks. The result is stored in a pre-allocated array.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool ph_to_ph(void * result, double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, unsigned char* mask){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->ph_to_ph((float*)result, lb1, rb1, pos1, lb2, rb2, pos2, mask);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->ph_to_ph((double*)result, lb1, rb1, pos1, lb2, rb2, pos2, mask);
			else
				std::cout<<"envi::ph_to_ph ERROR - unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->ph_to_ph((float*)result, lb1, rb1, pos1, lb2, rb2, pos2, mask);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->ph_to_ph((double*)result, lb1, rb1, pos1, lb2, rb2, pos2, mask);
			else
				std::cout<<"envi::ph_to_ph ERROR - unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->ph_to_ph((float*)result, lb1, rb1, pos1, lb2, rb2, pos2, mask);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->ph_to_ph((double*)result, lb1, rb1, pos1, lb2, rb2, pos2, mask);
			else
				std::cout<<"envi::ph_to_ph ERROR - unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"envi::ph_to_ph ERROR - unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Compute the ratio between a peak area and peak height.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_ph(void* result, double lb1, double rb1, double lab1, double rab1, double lb2, double rb2, double pos, unsigned char* mask = NULL){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->pa_to_ph((float*)result, lb1, rb1, lab1, rab1, lb2, rb2, pos, mask);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->pa_to_ph((double*)result, lb1, rb1, lab1, rab1, lb2, rb2, pos, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->pa_to_ph((float*)result, lb1, rb1, lab1, rab1, lb2, rb2, pos, mask);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->pa_to_ph((double*)result, lb1, rb1, lab1, rab1, lb2, rb2, pos, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->pa_to_ph((float*)result, lb1, rb1, lab1, rab1, lb2, rb2, pos, mask);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->pa_to_ph((double*)result, lb1, rb1, lab1, rab1, lb2, rb2, pos, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Compute the ratio between two peak areas.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param lab1 is the label value for the left bound (start of the integration) of the first peak (numerator)
	/// @param rab1 is the label value for the right bound (end of the integration) of the first peak (numerator)
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param lab2 is the label value for the left bound (start of the integration) of the second peak (denominator)
	/// @param rab2 is the label value for the right bound (end of the integration) of the second peak (denominator)
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_pa(void* result, double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double lab2, double rab2, unsigned char* mask = NULL){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->pa_to_pa((float*)result, lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, mask);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->pa_to_pa((double*)result, lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->pa_to_pa((float*)result, lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, mask);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->pa_to_pa((double*)result, lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->pa_to_pa((float*)result, lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, mask);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->pa_to_pa((double*)result, lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Compute the centroid of a baseline corrected peak.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label for the start of the peak
	/// @param rab is the label for the end of the peak
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool centroid(void* result, double lb1, double rb1, double lab1, double rab1, unsigned char* mask = NULL){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->centroid((float*)result, lb1, rb1, lab1, rab1, mask);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->centroid((double*)result, lb1, rb1, lab1, rab1, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->centroid((float*)result, lb1, rb1, lab1, rab1, mask);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->centroid((double*)result, lb1, rb1, lab1, rab1, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->centroid((float*)result, lb1, rb1, lab1, rab1, mask);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->centroid((double*)result, lb1, rb1, lab1, rab1, mask);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Closes the ENVI file.
	void close(){
		if(file == NULL) return;
		if(header.interleave == envi_header::BSQ){
			if(header.data_type ==envi_header::float32)
				((bsq<float>*)file)->close();
			else if(header.data_type == envi_header::float64)
				((bsq<double>*)file)->close();
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIL){
			if(header.data_type ==envi_header::float32)
				((bil<float>*)file)->close();
			else if(header.data_type == envi_header::float64)
				((bil<double>*)file)->close();
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIP){
			if(header.data_type ==envi_header::float32)
				((bip<float>*)file)->close();
			else if(header.data_type == envi_header::float64)
				((bip<double>*)file)->close();
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
	}

	/// Retrieve a single pixel and stores it in pre-allocated memory.

	/// @param p is a pointer to pre-allocated memory at least sizeof(T) in size.
	/// @param n is an integer index to the pixel using linear array indexing.
	bool pixel(void * p, unsigned n){
		if(header.interleave == envi_header::BSQ){
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->pixel((float*)p, n);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->pixel((double*)p, n);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
		else if(header.interleave == envi_header::BIL){
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->pixel((float*)p, n);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->pixel((double*)p, n);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
		else if(header.interleave == envi_header::BIP){
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->pixel((float*)p, n);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->pixel((double*)p, n);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Saves a header file describing the current ENVI file parameters.
	bool save_header(std::string filename){

		//save the header file here
		header.save(filename);

		return true;
	}

	/// Retrieve a single band (by numerical label) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param wavelength is a floating point value (usually a wavelength in spectral data) used as a label for the band to be copied.
	bool band(void* ptr, double wavelength, bool PROGRESS = false){

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->band((float*)ptr, wavelength, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->band((double*)ptr, wavelength, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->band((float*)ptr, wavelength, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->band((double*)ptr, wavelength, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->band((float*)ptr, wavelength, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->band((double*)ptr, wavelength, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	void band_bounds(double wavelength, size_t& low, size_t& high) {
		if (header.interleave == envi_header::BSQ) {		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->band_bounds(wavelength, low, high);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->band_bounds(wavelength, low, high);
			else {
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL) {
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->band_bounds(wavelength, low, high);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->band_bounds(wavelength, low, high);
			else {
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP) {
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->band_bounds(wavelength, low, high);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->band_bounds(wavelength, low, high);
			else {
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
	}

	// Retrieve a spectrum at the specified 1D location

	/// @param ptr is a pointer to pre-allocated memory of size B*sizeof(T)
	/// @param x is the 1D coordinate of the spectrum
	template<typename T>
	void spectrum(T* ptr, size_t n, bool PROGRESS = false){

		void* temp = alloc_array(header.bands);		//allocate space for the output array

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32){
				((bsq<float>*)file)->spectrum((float*)temp, n, PROGRESS);
				cast<T, float>(ptr, (float*)temp, header.bands);
			}
			else if (header.data_type == envi_header::float64){
				((bsq<double>*)file)->spectrum((double*)temp, n, PROGRESS);
				cast<T, double>(ptr, (double*)temp, header.bands);
			}
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32){
				((bil<float>*)file)->spectrum((float*)temp, n, PROGRESS);
				cast<T, float>(ptr, (float*)temp, header.bands);
			}
			else if (header.data_type == envi_header::float64){
				((bil<double>*)file)->spectrum((double*)temp, n, PROGRESS);
				cast<T, double>(ptr, (double*)temp, header.bands);
			}
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32){
				((bip<float>*)file)->spectrum((float*)temp, n, PROGRESS);
				float test = ((float*)temp)[0];
				cast<T, float>(ptr, (float*)temp, header.bands);
			}
			else if (header.data_type == envi_header::float64){
				((bip<double>*)file)->spectrum((double*)temp, n, PROGRESS);
				cast<T, double>(ptr, (double*)temp, header.bands);
			}
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		free(temp);
	}

	/// Retrieve a spectrum from the specified (x, y) location

	/// @param ptr is a pointer to pre-allocated memory of size B*sizeof(T)
	/// @param x is the x-coordinate of the spectrum
	/// @param y is the y-coordinate of the spectrum
	template<typename T>
	void spectrum(T* ptr, size_t x, size_t y, bool PROGRESS = false){

		spectrum<T>(ptr, y * header.samples + x, PROGRESS);
	}

	/// Retrieve a single band (based on index) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param page <= B is the integer number of the band to be copied.
	bool band_index(void* ptr, unsigned long long b){
		if (header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->band_index((float*)ptr, b);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->band_index((double*)ptr, b);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->band_index((float*)ptr, b);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->band_index((double*)ptr, b);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->band_index((float*)ptr, b);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->band_index((double*)ptr, b);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Calculate the mean value for all masked (or valid) pixels in a band and returns the average spectrum

	/// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool mean_spectrum(double * p, double* std, unsigned char* mask, bool PROGRESS = false){
		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->mean_spectrum(p, std, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->mean_spectrum(p, std, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->mean_spectrum(p, std, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->mean_spectrum(p, std, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->mean_spectrum(p, std, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->mean_spectrum(p, std, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Calculate the mean value for all masked (or valid) pixels in a band and returns the average spectrum

	/// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool median_spectrum(double* m, unsigned char* mask, bool PROGRESS = false){
		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->median_spectrum(m, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->median_spectrum(m, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else{
			std::cout<<"ERROR: median calculation is only supported for BSQ interleave types. Convert to process."<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Calculate the covariance matrix for all masked pixels in the image.

	/// @param co is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix
	/// @param avg is a pointer to memory of size B that stores the average spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool co_matrix(double* co, double* avg, unsigned char* mask, int cuda_device, bool PROGRESS = false){
		if (header.interleave == envi_header::BSQ){
			std::cout<<"ERROR: calculating the covariance matrix for a BSQ file is impractical; convert to BIL or BIP first"<<std::endl;
			exit(1);
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->co_matrix(co, avg, mask, cuda_device, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->co_matrix(co, avg, mask, cuda_device, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->co_matrix(co, avg, mask, cuda_device, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->co_matrix(co, avg, mask, cuda_device, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Calculate the covariance of noise matrix for all masked pixels in the image.

	/// @param co is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix
	/// @param avg is a pointer to memory of size B that stores the average spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool coNoise_matrix(double* coN, double* avg, unsigned char* mask, int cuda_device = 0, bool PROGRESS = false){
		if (header.interleave == envi_header::BSQ){
			std::cout<<"ERROR: calculating the covariance matrix of noise for a BSQ file is impractical; convert to BIP first"<<std::endl;
			exit(1);
		}


		else if (header.interleave == envi_header::BIL){
		        std::cout<<"ERROR: calculating the covariance matrix of noise for a BIL file is impractical; convert to BIP first"<<std::endl;
                exit(1);
			 }

		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->coNoise_matrix(coN, avg, mask, cuda_device, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->coNoise_matrix(coN, avg, mask, cuda_device, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Crop a region of the image and save it to a new file.

	/// @param outfile is the file name for the new cropped image
	/// @param x0 is the lower-left x pixel coordinate to be included in the cropped image
	/// @param y0 is the lower-left y pixel coordinate to be included in the cropped image
	/// @param x1 is the upper-right x pixel coordinate to be included in the cropped image
	/// @param y1 is the upper-right y pixel coordinate to be included in the cropped image
	bool crop(std::string outfile,
			  unsigned long long x0, 
			  unsigned long long y0, 
			  unsigned long long x1, 
			  unsigned long long y1, 
			  unsigned long long b0, 
			  unsigned long long b1, 
			  bool PROGRESS = false){

		//save the header for the cropped file
		stim::envi_header new_header = header;
		new_header.samples = x1 - x0 + 1;
		new_header.lines = y1 - y0 + 1;
		new_header.bands = b1 - b0 + 1;
		std::vector<double>::const_iterator first = new_header.wavelength.begin() + b0;
		std::vector<double>::const_iterator last = new_header.wavelength.begin() + b1 + 1;
		new_header.wavelength = std::vector<double>(first, last);
		new_header.save(outfile + ".hdr");

		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->crop(outfile, x0, y0, x1, y1, b0, b1, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->crop(outfile, x0, y0, x1, y1, b0, b1, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->crop(outfile, x0, y0, x1, y1, b0, b1, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->crop(outfile, x0, y0, x1, y1, b0, b1, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->crop(outfile, x0, y0, x1, y1, b0, b1, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->crop(outfile, x0, y0, x1, y1, b0, b1, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	void subimages(std::string outfile, size_t nx, size_t ny, unsigned char* mask, bool PROGRESS = false){
		
		size_t nnz = 0;													//initialize the number of subimages to zero
		for(size_t i = 0; i < header.lines * header.samples; i++)		//for each pixel in the mask
			if(mask[i]) nnz++;											//if the pixel is valid, add a subimage


		//save the header for the cropped file
		stim::envi_header new_header = header;
		new_header.samples = nx;									//calculate the width of the output image (concatenated subimages)
		new_header.lines = nnz * ny;											//calculate the height of the output image (height of subimages)
		

		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->subimages(outfile, nx, ny, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->subimages(outfile, nx, ny, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			std::cout << "ERROR: unidentified data type" << std::endl;
			exit(1);
		}
		else if (header.interleave == envi_header::BIP){
			std::cout << "ERROR: unidentified data type" << std::endl;
			exit(1);
		}

		new_header.save(outfile + ".hdr");									//save the header for the output file
	}

	/// Remove a list of bands from the ENVI file

	/// @param outfile is the file name for the output hyperspectral image (with trimmed bands)
	/// @param b is an array of bands to be eliminated
	void trim(std::string outfile, std::vector<size_t> trimmed, bool PROGRESS = false){
		
		envi_header h = header;
		h.bands = header.bands - trimmed.size();			//calculate the new number of bands
		if(header.wavelength.size() != 0)
			h.wavelength.resize(h.bands);
		if(header.band_names.size() != 0)
			h.band_names.resize(h.bands);
		size_t it = 0;									//allocate an index into the trimmed bands array
		size_t i = 0;
		for(size_t b = 0; b < header.bands; b++){		//for each band
			if(b != trimmed[it]){
				if(h.wavelength.size()) h.wavelength[i] = header.wavelength[b];
				if(h.band_names.size()) h.band_names[i] = header.band_names[i];
				i++;
			}
			else it++;
		}
		h.save(outfile + ".hdr");

		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->trim(outfile, trimmed, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->trim(outfile, trimmed, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->trim(outfile, trimmed, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->trim(outfile, trimmed, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->trim(outfile, trimmed, PROGRESS);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->trim(outfile, trimmed, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		

	}

	/// Combine two ENVI images along the Y axis

	/// @param outfile is the combined file to be output
	/// @param C is the ENVI object for the image to be combined
	void combine(std::string outfile, envi C, long long x, long long y, bool PROGRESS = false){
		envi_header h = header;
		
		long long left = std::min<long long>(0, x);													//calculate the left edge of the final image
		long long right = std::max<long long>((long long)header.samples, C.header.samples + x);		//calculate the right edge of the final image
		long long top = std::min<long long>(0, y);													//calculate the top edge of the final image
		long long bottom = std::max<long long>((long long)header.lines, C.header.lines + y);		//calculate the bottom edge of the final image

		h.samples = right - left;
		h.lines = bottom - top;
	
		h.save(outfile + ".hdr");

		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->combine(outfile, (bsq<float>*)C.file, x, y, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->combine(outfile, (bsq<double>*)C.file, x, y, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->combine(outfile, (bil<float>*)C.file, x, y, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->combine(outfile, (bil<double>*)C.file, x, y, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->combine(outfile, (bip<float>*)C.file, x, y, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->combine(outfile, (bip<double>*)C.file, x, y, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
	}

	void append(std::string outfile, envi C, bool PROGRESS = false) {
		if (C.header.samples != header.samples ||									//verify that the images are the same size
			C.header.lines != header.lines) {
			std::cout << "ERROR - appended images must be the same size: input = [" << header.samples << " x " << header.lines << "], output = [" << C.header.samples << " x " << C.header.lines << "]" << std::endl;
			exit(1);
		}
		if (C.header.interleave != header.interleave) {
			std::cout << "ERROR - appended images must have the same interleave format" << std::endl;
			exit(1);
		}

		stim::envi_header new_header = header;												//create a header for the output image
		new_header.bands = header.bands + C.header.bands;									//calculate the number of bands in the new image

		if (header.wavelength.size() != 0 && C.header.wavelength.size() != 0) {				//if both files contain wavelength information
			for (size_t b = 0; b < C.header.wavelength.size(); b++)
				new_header.wavelength.push_back(C.header.wavelength[b]);					//append the wavelength labels to the new header array
		}
		else new_header.wavelength.clear();

		if (header.band_names.size() != 0 && C.header.band_names.size() != 0) {				//if both files contain band name information
			for (size_t b = 0; b < C.header.band_names.size(); b++)
				new_header.band_names.push_back(C.header.band_names[b]);					//append the wavelength labels to the new header array
		}
		else new_header.wavelength.clear();

		new_header.save(outfile + ".hdr");													//save the output

		if (header.interleave == envi_header::BSQ) {
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->append(outfile, (bsq<float>*)C.file, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->append(outfile, (bsq<double>*)C.file, PROGRESS);
			else {
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL) {
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->append(outfile, (bil<float>*)C.file, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->append(outfile, (bil<double>*)C.file, PROGRESS);
			else {
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP) {
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->append(outfile, (bip<float>*)C.file, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->append(outfile, (bip<double>*)C.file, PROGRESS);
			else {
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

	}

	/// Convolve the given band range with a kernel specified by a vector of coefficients.

	/// @param outfile is the combined file to be output
	/// @param c is an array of coefficients
	/// @param start is the band to start processing (the first coefficient starts here)
	/// @param nbands is the number of bands to process
	/// @param center is the index for the center coefficient for the kernel (used to set the wavelengths in the output file)
	void convolve(std::string outfile, std::vector<double> C, size_t start, size_t end, size_t center = 0, unsigned char* mask = NULL, bool PROGRESS = false){
		size_t nbands = end - start + 1;
		envi_header h = header;												//copy the current header
		h.bands = nbands;													//set the number of new bands
		if(header.wavelength.size() != 0){
			h.wavelength.resize(nbands);									//set the number of wavelengths to the number of bands
			for(size_t b = 0; b < nbands; b++)
				h.wavelength[b] = header.wavelength[b+center];
		}
		if(header.band_names.size() != 0){
			h.band_names.resize(nbands);
			for(size_t b = 0; b < nbands; b++)
				h.band_names[b] = header.band_names[b+center];
		}
		h.save(outfile + ".hdr");											//save the new header

		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->convolve(outfile, C, start, end, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->convolve(outfile, C, start, end, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->convolve(outfile, C, start, end, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->convolve(outfile, C, start, end, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->convolve(outfile, C, start, end, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->convolve(outfile, C, start, end, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
	}

	/// Approximates the nth derivative of the spectra to the specified order

	/// @param outfile is the file where the derivative approximation will be saved
	/// @n is the derivative to be calculated
	/// @order is the order of the error (must be even)
	void deriv(std::string outfile, size_t d, size_t order, unsigned char* mask = NULL, bool PROGRESS = false){
		header.save(outfile + ".hdr");
		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->deriv(outfile, d, order, header.wavelength, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->deriv(outfile, d, order, header.wavelength, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->deriv(outfile, d, order, header.wavelength, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->deriv(outfile, d, order, header.wavelength, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->deriv(outfile, d, order, header.wavelength, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->deriv(outfile, d, order, header.wavelength, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		exit(1);
	}

	void multiply(std::string outfile, double v, unsigned char* mask = NULL, bool PROGRESS = false){
		header.save(outfile + ".hdr");
		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->multiply(outfile, v, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->multiply(outfile, v, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->multiply(outfile, v, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->multiply(outfile, v, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->multiply(outfile, v, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->multiply(outfile, v, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		exit(1);
	}

	void add(std::string outfile, double v, unsigned char* mask = NULL, bool PROGRESS = false){
		header.save(outfile + ".hdr");
		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				((bsq<float>*)file)->add(outfile, v, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bsq<double>*)file)->add(outfile, v, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				((bil<float>*)file)->add(outfile, v, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bil<double>*)file)->add(outfile, v, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}

		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->add(outfile, v, mask, PROGRESS);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->add(outfile, v, mask, PROGRESS);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		exit(1);
	}

	


	void fft(std::string outfile, double band_min, double band_max, size_t samples = 0, void* ratio = NULL, size_t rx = 0, size_t ry = 0, bool PROGRESS = false, int cuda_device = 0){
		if(samples == 0) samples = header.bands;
		//double B = (double)header.bands;
		double delta = header.wavelength[1] - header.wavelength[0];					//calculate spacing in the current domain
		double span = samples * delta;											//calculate the span in the current domain
		double fft_delta = 1.0 / span;												//calculate the span in the FFT domain
		double fft_max = fft_delta * samples/2;										//calculate the maximum range of the FFT

		if(band_max > fft_max) band_max = fft_max;									//the user gave a band outside of the FFT range, reset the band to the maximum available
		size_t start_i = (size_t)std::ceil(band_min / fft_delta);					//calculate the first band to store
		size_t size_i = (size_t)std::floor(band_max / fft_delta) - start_i + 1;		//calculate the number of bands to store
		size_t end_i = start_i + size_i - 1;										//last band number

		envi_header new_header = header;
		new_header.bands = size_i;
		new_header.set_wavelengths(start_i * fft_delta, fft_delta);
		new_header.wavelength_units = "inv_" + header.wavelength_units;
		new_header.save(outfile + ".hdr");
		
		if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				((bip<float>*)file)->fft(outfile, start_i, end_i, samples, (float*)ratio, rx, ry, PROGRESS, cuda_device);
			else if (header.data_type == envi_header::float64)
				((bip<double>*)file)->fft(outfile, start_i, end_i, samples, (double*)ratio, rx, ry, PROGRESS, cuda_device);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else{
			std::cout<<"ERROR: only BIP files supported for FFT"<<std::endl;
			exit(1);
		}
	}
};	//end ENVI

}	//end namespace rts

#endif