bsq.h 32.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#ifndef STIM_BSQ_H
#define STIM_BSQ_H

#include "../envi/envi_header.h"
#include "../envi/binary.h"
#include "../envi/bil.h"
#include <cstring>
#include <utility>
#include <vector>



namespace stim{

/**
	The BIP class represents a 3-dimensional binary file stored using band sequential (BSQ) image encoding. The binary file is stored
	such that X-Y "frames" are stored sequentially to form an image stack along the z-axis. When accessing the data sequentially on disk,
	the dimensions read, from fastest to slowest, are X, Y, Z.

	This class is optimized for data streaming, and therefore supports extremely large (terabyte-scale) files. Data is loaded from disk
	on request. Functions used to access data are written to support efficient reading.
*/
template <typename T>

class bsq: public binary<T> {


protected:
	
	std::vector<double> w;	//band wavelengths
	unsigned int offset;

	using binary<T>::R;

	unsigned long X(){
		return R[0];
	}
	unsigned long Y(){
		return R[1];
	}
	unsigned long Z(){
		return R[2];
	}

	using binary<T>::thread_data;

public:

	using binary<T>::open;
	using binary<T>::file;
	using binary<T>::read_line_01;
	using binary<T>::read_plane_2;
	//using binary<T>::getSlice;
	

	/// Open a data file for reading using the class interface.

	/// @param filename is the name of the binary file on disk
	/// @param X is the number of samples along dimension 1
	/// @param Y is the number of samples (lines) along dimension 2
	/// @param B is the number of samples (bands) along dimension 3
	/// @param header_offset is the number of bytes (if any) in the binary header
	/// @param wavelengths is an optional STL vector of size B specifying a numerical label for each band
	bool open(std::string filename, unsigned int X, unsigned int Y, unsigned int B, unsigned int header_offset, std::vector<double> wavelengths){

		//copy the wavelengths to the BSQ file structure
		w = wavelengths;
		//copy the wavelengths to the structure
		offset = header_offset;

		return open(filename, vec<unsigned int>(X, Y, B), header_offset);
		
	}

	/// Retrieve a single band (based on index) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param page <= B is the integer number of the band to be copied.
	bool band_index( T * p, unsigned int page){
		return read_plane_2(p, page);
	}

	/// Retrieve a single band (by numerical label) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param wavelength is a floating point value (usually a wavelength in spectral data) used as a label for the band to be copied.
	bool band( T * p, double wavelength){

		//if there are no wavelengths in the BSQ file
		if(w.size() == 0)
			return band_index(p, (unsigned int)wavelength);

		unsigned int XY = X() * Y();	//calculate the number of pixels in a band
		unsigned page = 0;                


		//get the two neighboring bands (above and below 'wavelength')

		//if wavelength is smaller than the first one in header file
		if ( w[page] > wavelength ){
			band_index(p, page);
			return true;
		}

		while( w[page] < wavelength )
		{
			page++;
			//if wavelength is larger than the last wavelength in the header file
			//	(the wavelength is out of bounds)
			if (page == Z()) {
				band_index(p, Z()-1);		//return the last band
				return true;
			}
		}
		//when the page counter points to the first band above 'wavelength'
		if ( wavelength < w[page] ){

			//do the interpolation
			T * p1;
			T * p2;
			p1=(T*)malloc( XY * sizeof(T));                     //memory allocation
			p2=(T*)malloc( XY * sizeof(T));
			band_index(p1, page - 1);
			band_index(p2, page );
			for(unsigned i=0; i < XY; i++){
				double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
				p[i] = (p2[i] - p1[i]) * r + p1[i];
			}
			free(p1);
			free(p2);
		}
		//if the wavelength is equal to a wavelength in header file
		else{
			band_index(p, page);		//return the band
		}

		return true;
	}

	/// Retrieve a single spectrum (Z-axis line) at a given (x, y) location and stores it in pre-allocated memory.

	/// @param p is a pointer to pre-allocated memory at least B * sizeof(T) in size.
	/// @param x is the x-coordinate (dimension 1) of the spectrum.
	/// @param y is the y-coordinate (dimension 2) of the spectrum.
	bool spectrum(T * p, unsigned x, unsigned y){
		return read_line_01(p, x, y);
	}

	/// Retrieve a single pixel and stores it in pre-allocated memory.

	/// @param p is a pointer to pre-allocated memory at least sizeof(T) in size.
	/// @param n is an integer index to the pixel using linear array indexing.
	bool pixel(T * p, unsigned n){

		unsigned bandnum = X() * Y();		//calculate numbers in one band
		if ( n >= bandnum){							//make sure the pixel number is right
			std::cout<<"ERROR: sample or line out of range"<<std::endl;
			return false;
		}

		file.seekg(n * sizeof(T), std::ios::beg);           //point to the certain pixel
		for (unsigned i = 0; i < Z(); i++)
		{
			file.read((char *)(p + i), sizeof(T));
			file.seekg((bandnum - 1) * sizeof(T), std::ios::cur);    //go to the next band
		}

		return true;	
	}

	/// Perform baseline correction given a list of baseline points and stores the result in a new BSQ file.

	/// @param outname is the name of the output file used to store the resulting baseline-corrected data.
	/// @param wls is the list of baseline points based on band labels.	
	bool baseline(std::string outname, std::vector<double> wls )
	{
		unsigned N = wls.size();			//get the number of baseline points

		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
		std::string headername = outname + ".hdr";              //the header file name

		//simplify image resolution
		unsigned int B = Z();		//calculate the number of bands
		unsigned int XY = X() * Y();	//calculate the number of pixels in a band
		unsigned int S = XY * sizeof(T);		//calculate the number of bytes in a band

		double ai, bi;	//stores the two baseline points wavelength surrounding the current band
		double ci;		//stores the current band's wavelength

		unsigned control=0;

		T * a;					//pointers to the high and low band images
		T * b;
		T * c;				//pointer to the current image

		a = (T*)malloc( S );     //memory allocation
		b = (T*)malloc( S ); 
		c = (T*)malloc( S ); 

		if (a == NULL || b == NULL || c == NULL){
			std::cout<<"ERROR: error allocating memory";
			exit(1);
		}


		//initialize lownum, highnum, low, high		
		ai=w[0];

		//if no baseline point is specified at band 0,
			//set the baseline point at band 0 to 0
		if(wls[0] != w[0]){
			bi = wls[control];			
			memset(a, (char)0, S);
		}
		//else get the low band
		else{
			control += 1;
			band(a, ai);
			bi = wls[control];
		}
		//get the high band
		band(b, bi);

		//correct every band 
		for(unsigned cii = 0; cii < B; cii++){

			//update baseline points, if necessary
			if( w[cii] >= bi && cii != B - 1) {
				//if the high band is now on the last BL point?
				if (control != N-1) {

					control++;		//increment the index

					std::swap(a, b);	//swap the baseline band pointers

					ai = bi;
					bi = wls[control];
					band(b, bi);

				}
				//if the last BL point on the last band of the file?
				else if ( wls[control] < w[B - 1]) {

					std::swap(a, b);	//swap the baseline band pointers

					memset(b, (char)0, S);	//clear the high band

					ai = bi;
					bi = w[B - 1];
				}
			}

			//get the current band
			band_index(c, cii);
			ci = w[cii];
			
			//perform the baseline correction
			for(unsigned i=0; i < XY; i++){
				double r = (double) (ci - ai) / (double) (bi - ai);
				c[i] =(T) ( c[i] - (b[i] - a[i]) * r - a[i] );
			}
			
			target.write(reinterpret_cast<const char*>(c), S);   //write the corrected data into destination

			thread_data = (double)cii / B * 100;
		
		}	

		//header.save(headername);         //save the new header file
		
		free(a);
		free(b);
		free(c);
		target.close();

		thread_data = 100;
		return true;
	}

	/// Normalize all spectra based on the value of a single band, storing the result in a new BSQ file.

	/// @param outname is the name of the output file used to store the resulting baseline-corrected data.
	///	@param w is the label specifying the band that the hyperspectral image will be normalized to.
	///	@param t is a threshold specified such that a spectrum with a value at w less than t is set to zero. Setting this threshold allows the user to limit division by extremely small numbers.
	bool normalize(std::string outname, double w, double t = 0.0)
	{
		unsigned int B = Z();		//calculate the number of bands
		unsigned int XY = X() * Y();	//calculate the number of pixels in a band
		unsigned int S = XY * sizeof(T);		//calculate the number of bytes in a band

		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
		std::string headername = outname + ".hdr";              //the header file name

		T * b;					//pointers to the certain wavelength band
		T * c;				//pointer to the current image

		b = (T*)malloc( S );     //memory allocation
		c = (T*)malloc( S ); 

		band(b, w);             //get the certain band into memory

		for(unsigned j = 0; j < B; j++)
		{
			band_index(c, j);                     //get the current band into memory
			for(unsigned i = 0; i < XY; i++)
			{
				if(b[i] < t)
					c[i] = (T)0.0;
				else
					c[i] = c[i] / b[i];
			}
			target.write(reinterpret_cast<const char*>(c), S);   //write normalized data into destination

			thread_data = (double)j / B * 100;
		}

		

		//header.save(headername);         //save the new header file
		
		free(b);
		free(c);
		target.close();
		thread_data = 100;					//make sure that the progress bar is full
		return true;
	}
	
	/// Convert the current BSQ file to a BIP file with the specified file name.

	/// @param outname is the name of the output BIP file to be saved to disk.
	bool bip(std::string outname)
	{
		std::string temp = outname + "_temp";
		std::string headtemp = temp + ".hdr";
		//first creat a temporary bil file and convert bsq file to bil file
		bil(temp);

		stim::bil<T> n;
		if(n.open(temp, X(), Y(), Z(), offset, w)==false){        //open infile
			std::cout<<"ERROR: unable to open input file"<<std::endl;
			exit(1);
		}
		//then convert bil file to bip file
		n.bip(outname);
		n.close();
		remove(temp.c_str());
		remove(headtemp.c_str());
		return true;
	}

	/// Convert the current BSQ file to a BIL file with the specified file name.

	/// @param outname is the name of the output BIL file to be saved to disk.
	bool bil(std::string outname)
	{
		//simplify image resolution
		unsigned int L = X() * Z() * sizeof(T);		//calculate the number of bytes of a ZX slice
		unsigned int jump = (Y() - 1) * X() * sizeof(T);
		
		std::ofstream target(outname.c_str(), std::ios::binary);
		std::string headername = outname + ".hdr";
		
		unsigned int xz_bytes = X() * Z() * sizeof(T);
		T * xz_slice;						//pointer to the current spectrum
		xz_slice = (T*)malloc(xz_bytes);

		for ( unsigned y = 0; y < Y(); y++)									//for each y position
		{
			file.seekg(y * X() * sizeof(T), std::ios::beg);					//seek to the beginning of the xz slice
			for ( unsigned z = 0; z < Z(); z++ )							//for each band
			{
				file.read((char *)(xz_slice + z * X()), sizeof(T) * X());	//read a line
				file.seekg(jump, std::ios::cur);							//seek to the next band

				
				thread_data = (double)(y * Z() + z) / (Z() * Y()) * 100;	//update the progress counter
			}					
			target.write(reinterpret_cast<const char*>(xz_slice), xz_bytes);   //write the generated XZ slice to the target file	
		}


		
		thread_data = 100;
		
		free(xz_slice);
		target.close();

		return true;
	}

	/// Return a baseline corrected band given two adjacent baseline points and their bands. The result is stored in a pre-allocated array.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lp is a pointer to an array holding the band image for the left baseline point
	/// @param rp is a pointer to an array holding the band image for the right baseline point
	/// @param wavelength is the label value for the requested baseline-corrected band
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size.
	bool baseline_band(double lb, double rb, T* lp, T* rp, double wavelength, T* result){

		unsigned XY = X() * Y();
		band(result, wavelength);		//get band

		//perform the baseline correction
		double r = (double) (wavelength - lb) / (double) (rb - lb);
		for(unsigned i=0; i < XY; i++){
			result[i] =(T) (result[i] - (rp[i] - lp[i]) * r - lp[i] );
		}
		return true;
	}

	/// Return a baseline corrected band given two adjacent baseline points. The result is stored in a pre-allocated array.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param bandwavelength is the label value for the desired baseline-corrected band
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size.
	bool height(double lb, double rb, double bandwavelength, T* result){

		T* lp;
		T* rp;
		unsigned XY = X() * Y();
		unsigned S = XY * sizeof(T);
		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);

		band(lp, lb);
		band(rp, rb);		

		baseline_band(lb, rb, lp, rp, bandwavelength, result);

		free(lp);
		free(rp);
		return true;
	}


	/// Calculate the area under the spectrum between two specified points and stores the result in a pre-allocated array.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label value for the left bound (start of the integration)
	/// @param rab is the label value for the right bound (end of the integration)
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool area(double lb, double rb, double lab, double rab, T* result){

		T* lp;	//left band pointer
		T* rp;	//right band pointer
		T* cur;		//current band 1
		T* cur2;	//current band 2

		unsigned XY = X() * Y();
		unsigned S = XY * sizeof(T);

		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);
		cur = (T*) malloc(S);
		cur2 = (T*) malloc(S);

		memset(result, (char)0, S);

		//find the wavelenght position in the whole band
		unsigned int n = w.size();
		unsigned int ai = 0;		//left bound position
		unsigned int bi = n - 1;		//right bound position



		//to make sure the left and the right bound are in the bandwidth
		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
			std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
			exit(1);
		}
		//to make sure rigth bound is bigger than left bound
		else if(lb > rb){
			std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
			exit(1);
		}

		//get the position of lb and rb
		while (lab >= w[ai]){
			ai++;
		}
		while (rab <= w[bi]){
			bi--;
		}

		band(lp, lb);
		band(rp, rb);

		//calculate the beginning and the ending part
		baseline_band(lb, rb, lp, rp, rab, cur2);		//ending part
		baseline_band(lb, rb, lp, rp, w[bi], cur);
		for(unsigned j = 0; j < XY; j++){
			result[j] += (rab - w[bi]) * (cur[j] + cur2[j]) / 2.0;
		}
		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
		baseline_band(lb, rb, lp, rp, w[ai], cur);
		for(unsigned j = 0; j < XY; j++){	
			result[j] += (w[ai] - lab) * (cur[j] + cur2[j]) / 2.0;
		}

		//calculate the area
		ai++;
		for(unsigned i = ai; i <= bi ;i++)
		{
			baseline_band(lb, rb, lp, rp, w[ai], cur2);
			for(unsigned j = 0; j < XY; j++)
			{
				result[j] += (w[ai] - w[ai-1]) * (cur[j] + cur2[j]) / 2.0; 
			}
			std::swap(cur,cur2);		//swap the band pointers
		}

		free(lp);
		free(rp);
		free(cur);
		free(cur2);
		return true;
	}

	/// Compute the ratio of two baseline-corrected peaks. The result is stored in a pre-allocated array.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool ph_to_ph(double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, T * result){

		T* p1 = (T*)malloc(X() * Y() * sizeof(T));	
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));	
		
		//get the two peak band
		height(lb1, rb1, pos1, p1);
		height(lb2, rb2, pos2, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < X() * Y(); i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}
	
	/// Compute the ratio between a peak area and peak height.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_ph(double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double pos, T* result){
		
		T* p1 = (T*)malloc(X() * Y() * sizeof(T));	
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));	
		
		//get the area and the peak band
		area(lb1, rb1, lab1, rab1, p1);
		height(lb2, rb2, pos, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < X() * Y(); i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}		
	
	/// Compute the ratio between two peak areas.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param lab1 is the label value for the left bound (start of the integration) of the first peak (numerator)
	/// @param rab1 is the label value for the right bound (end of the integration) of the first peak (numerator)
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param lab2 is the label value for the left bound (start of the integration) of the second peak (denominator)
	/// @param rab2 is the label value for the right bound (end of the integration) of the second peak (denominator)	
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_pa(double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double lab2, double rab2, T* result){
		
		T* p1 = (T*)malloc(X() * Y() * sizeof(T));	
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));	
		
		//get the area and the peak band
		area(lb1, rb1, lab1, rab1, p1);
		area(lb2, rb2, lab2, rab2, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < X() * Y(); i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}		

	/// Compute the definite integral of a baseline corrected peak.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label for the start of the definite integral
	/// @param rab is the label for the end of the definite integral
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool x_area(double lb, double rb, double lab, double rab, T* result){
		T* lp;	//left band pointer
		T* rp;	//right band pointer
		T* cur;		//current band 1
		T* cur2;	//current band 2

		unsigned XY = X() * Y();
		unsigned S = XY * sizeof(T);

		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);
		cur = (T*) malloc(S);
		cur2 = (T*) malloc(S);

		memset(result, (char)0, S);

		//find the wavelenght position in the whole band
		unsigned int n = w.size();
		unsigned int ai = 0;		//left bound position
		unsigned int bi = n - 1;		//right bound position

		//to make sure the left and the right bound are in the bandwidth
		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
			std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
			exit(1);
		}
		//to make sure rigth bound is bigger than left bound
		else if(lb > rb){
			std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
			exit(1);
		}

		//get the position of lb and rb
		while (lab >= w[ai]){
			ai++;
		}
		while (rab <= w[bi]){
			bi--;
		}

		band(lp, lb);
		band(rp, rb);

		//calculate the beginning and the ending part
		baseline_band(lb, rb, lp, rp, rab, cur2);		//ending part
		baseline_band(lb, rb, lp, rp, w[bi], cur);
		for(unsigned j = 0; j < XY; j++){
			result[j] += (rab - w[bi]) * (rab + w[bi]) * (cur[j] + cur2[j]) / 4.0;
		}
		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
		baseline_band(lb, rb, lp, rp, w[ai], cur);
		for(unsigned j = 0; j < XY; j++){	
			result[j] += (w[ai] - lab) * (w[ai] + lab) * (cur[j] + cur2[j]) / 4.0;
		}

		//calculate f(x) times x
		ai++;
		for(unsigned i = ai; i <= bi ;i++)
		{
			baseline_band(lb, rb, lp, rp, w[ai], cur2);
			for(unsigned j = 0; j < XY; j++)
			{
				result[j] += (w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * (cur[j] + cur2[j]) / 4.0; 
			}
			std::swap(cur,cur2);		//swap the band pointers
		}

		free(lp);
		free(rp);
		free(cur);
		free(cur2);
		return true;
	}

	/// Compute the centroid of a baseline corrected peak.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label for the start of the peak
	/// @param rab is the label for the end of the peak
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool cpoint(double lb, double rb, double lab, double rab, T* result){
		T* p1 = (T*)malloc(X() * Y() * sizeof(T));	
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));	
		
		//get the area and the peak band
		x_area(lb, rb, lab, rab, p1);
		area(lb, rb, lab, rab, p2);
		//calculate the ratio in result
		for(unsigned i = 0; i < X() * Y(); i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;	
	}

	/// Create a mask based on a given band and threshold value.

	/// All pixels in the
	/// specified band greater than the threshold are true and all pixels less than the threshold are false.
	/// @param mask_band is the band used to specify the mask
	/// @param threshold is the threshold used to determine if the mask value is true or false
	/// @param p is a pointer to a pre-allocated array at least X * Y in size
	bool build_mask(double mask_band, double threshold, unsigned char* p = NULL){

		T* temp = (T*)malloc(X() * Y() * sizeof(T));		//allocate memory for the certain band
		band(temp, mask_band);

		for (unsigned int i = 0; i < X() * Y(); i++) {
				if (temp[i] < threshold)
					p[i] = 0;
				else
					p[i] = 255;
		}

		free(temp);
		return true;

	}

	/// Apply a mask file to the BSQ image, setting all values outside the mask to zero.

	/// @param outfile is the name of the masked output file
	/// @param p is a pointer to memory of size X * Y, where p(i) = 0 for pixels that will be set to zero.
	bool apply_mask(std::string outfile, unsigned char* p){

		std::ofstream target(outfile.c_str(), std::ios::binary);

		unsigned XY = X() * Y();		//calculate number of a band
		unsigned L = XY * sizeof(T);

		T * temp = (T*)malloc(L);

		for (unsigned i = 0; i < Z(); i++)			//for each spectral bin
		{
			band_index(temp, i);					//get the specified band (by index)
			for ( unsigned j = 0; j < XY; j++)		// for each pixel
			{
				if(p[j] == 0){						//if the mask is 0 at that pixel
					temp[j] = 0;					//set temp to zero
				}
				else{
					continue;
				}
			}
			target.write(reinterpret_cast<const char*>(temp), L);   //write the XY slice at that band to disk
		}
		target.close();
		free(temp);
		return true;
	}

	/// Saves to disk only those spectra corresponding to mask values != 0
	bool sift(std::string outfile, unsigned char* p){
		std::ofstream target(outfile.c_str(), std::ios::binary);
		// open a band (XY plane)
		unsigned long XY = X() * Y(); //Number of XY pixels
		unsigned long L = XY * sizeof(T); //size of XY pixels

		T * temp = (T*)malloc(L); //allocate memory for a band
		T * temp_vox = (T*)malloc(sizeof(T)); //allocate memory for one voxel

		for (unsigned long i = 0; i < Z(); i++)			//for each spectral bin
		{
			band_index(temp, i);					//get the specified band (XY sheet by index)
			for (unsigned long j = 0; j < XY; j++)		// for each pixel
			{
				if (p[j] != 0){						//if the mask is != 0 at that pixel
					temp_vox[0] = temp[j];
					target.write(reinterpret_cast<const char*>(temp_vox), sizeof(T));   //write the XY slice at that band to disk
				}
				else{
					continue;
				}

				thread_data = (double)(i * XY + j) / (XY * Z()) * 100;
			}
		}
		target.close();
		free(temp);

		thread_data = 100;

		return true;
	}

	/// Generates a spectral image from a matrix of spectral values in lexicographic order and a mask
	bool unsift(std::string outfile, unsigned char* p, unsigned int samples, unsigned int lines){

		//create a binary output stream
		std::ofstream target(outfile.c_str(), std::ios::binary);

		//make sure that there's only one line
		if(Y() != 1){
			std::cout<<"ERROR in stim::bsq::sift() - number of lines does not equal 1"<<std::endl;
			return false;
		}

		std::cout<<"started sifting"<<std::endl;

		//get the number of pixels and bands in the input image
		unsigned long P = X(); 					//Number of pixels
		unsigned long B = Z();					//number of bands
		unsigned long XY = samples * lines;		//total number of pixels in an unsifted image

		// allocate memory for a sifted band
		T * sifted = (T*)malloc(P * sizeof(T)); //allocate memory for a band

		//allocate memory for an unsifted band image
		T* unsifted = (T*) malloc(XY * sizeof(T));

		//for each band
		for(unsigned long b = 0; b < B; b++){

			//set the unsifted index value to zero
			unsigned long i = 0;

			//retrieve the sifted band (masked pixels only)
			band_index(sifted, b);

			//for each pixel in the final image (treat it as a 1D image)
			for(unsigned long xi = 0; xi < XY; xi++){
				if( p[xi] == 0 )
					unsifted[xi] = 0;
				else{
					unsifted[xi] = sifted[i];
					i++;
				}
				//std::cout<<xi<<"/"<<XY<<",   "<<b<<"/"<<B<<std::endl;
				thread_data = (double)(b * XY + xi) / (B * XY) * 100;
			}
			//std::cout<<b*XY<<"/"<<B*XY<<"      "<<B<<"-"<<XY<<std::endl;
			//write the band image to disk
			target.write(reinterpret_cast<const char*>(unsifted), sizeof(T) * XY);
		}

		//std::cout<<"unsifted"<<std::endl;
		thread_data = 100;

		return true;
	}


	/// Calculate the mean band value (average along B) at each pixel location.

	/// @param p is a pointer to memory of size X * Y * sizeof(T) that will store the band averages.
	bool band_avg(T* p){
		unsigned long long XY = X() * Y();
		T* temp = (T*)malloc(sizeof(T) * XY);
		//initialize p
		band_index(p, 0);
		for (unsigned j = 0; j < XY; j++){
			p[j] /= (T)Z();
		}
		//get every band and add them all
		for (unsigned i = 1; i < Z(); i++){
			band_index(temp, i);
			for (unsigned j = 0; j < XY; j++){
				p[j] += temp[j]/(T)Z();
			}
		}
		free(temp);
		return true;
	}

	/// Calculate the mean value for all masked (or valid) pixels in a band and returns the average spectrum

	/// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool avg_band(T*p, unsigned char* mask){
		unsigned long long XY = X() * Y();
		unsigned count = 0;						//count will store the number of masked pixels
		T* temp = (T*)malloc(sizeof(T) * XY);
		//calculate this loop counts the number of true pixels in the mask
		for (unsigned j = 0; j < XY; j++){
			if (mask[j] != 0){
				count++;
			}
		}
		//this loops goes through each band in B (Z())
		//	masked (or valid) pixels from that band are averaged and the average is stored in p
		for (unsigned i = 0; i < Z(); i++){
			p[i] = 0;
			band_index(temp, i);				//get the band image and store it in temp
			for (unsigned j = 0; j < XY; j++){	//loop through temp, averaging valid pixels
				if (mask[j] != 0){
					p[i] += temp[j] / (T)count;
				}				
			}
		}
		free(temp);
		return true;
	}

	/// Calculate the covariance matrix for all masked pixels in the image.

	/// @param co is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix
	/// @param avg is a pointer to memory of size B that stores the average spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool co_matrix(T* co, T* avg, unsigned char *mask){
		//memory allocation
		unsigned long long xy = X() * Y();
		unsigned int B = Z();
		T* bandi = (T*)malloc(sizeof(T) * xy);
		T* bandj = (T*)malloc(sizeof(T) * xy);
		
		//count vaild pixels in a band
		unsigned count = 0;
		for (unsigned j = 0; j < xy; j++){
			if (mask[j] != 0){
				count++;
			}
		}
		//calculate correlation coefficient matrix
		for (unsigned i = 0; i < B; i++)
		{
			band_index(bandi, i);
			for (unsigned j = i; j < B; j++){
				band_index(bandj, j);
				T numerator = 0;			//to calculate element in correlation coefficient matrix, numerator part
				//calculate the R(i,j) in correlation coeffient matrix
				for (unsigned k = 0; k < xy; k++){
					if (mask[k] != 0){
						numerator += (bandi[k] - avg[i]) * (bandj[k] - avg[j]) / count;
					}
				}
				co[i*B + j] = numerator;
				co[j*B + i] = numerator;		//because correlated matrix is a symmetric matrix
			}
		}
		free(bandi);
		free(bandj);
		return true;
	}


	/// Crop a region of the image and save it to a new file.

	/// @param outfile is the file name for the new cropped image
	/// @param x0 is the lower-left x pixel coordinate to be included in the cropped image
	/// @param y0 is the lower-left y pixel coordinate to be included in the cropped image
	/// @param x1 is the upper-right x pixel coordinate to be included in the cropped image
	/// @param y1 is the upper-right y pixel coordinate to be included in the cropped image
	bool crop(std::string outfile, unsigned long long x0,
								   unsigned long long y0,
								   unsigned long long x1,
								   unsigned long long y1,
								   unsigned long long b0,
								   unsigned long long b1){

		//calculate the new number of samples, lines, and bands
		unsigned long long samples = x1 - x0;
		unsigned long long lines = y1 - y0;
		unsigned long long bands = b1 - b0;

		//calculate the size of a single band
		unsigned long long L = samples * lines * sizeof(T);

		//allocate space for a single band
		T* temp = (T*)malloc(L);

		//create an output stream to store the output file
		std::ofstream out(outfile.c_str(), std::ios::binary);

		//calculate the distance required to jump from the end of one band to the beginning of another
		unsigned long long jumpb = X() * (Y() - lines) * sizeof(T);

		//calculate the distance required to jump from the end of one line to the beginning of another
		unsigned long long jumpl = (X() - samples) * sizeof(T);

		//seek to the start of the cropped region in the input file
		file.seekg( (b0 * X() * Y() + y0 * X() + x0) * sizeof(T), std::ios::beg);

		//for each band
		for (unsigned long long z = b0; z < b1; z++)
		{
			for (unsigned y = 0; y < lines; y++)
			{
				file.read((char *)(temp + y * samples), sizeof(T) * samples);
				file.seekg(jumpl, std::ios::cur);    //go to the next band	

				thread_data = (double)(z * lines + y) / (Z() * lines) * 100;
			}
			out.write(reinterpret_cast<const char*>(temp), L);   //write slice data into target file	
			file.seekg(jumpb, std::ios::cur);
		}
		free(temp);

		thread_data = 100;

		return true;
	}


	/// Close the file.
	bool close(){
		file.close();
		return true;
	}

	};
}

#endif