image.h 21.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
#ifndef STIM_IMAGE_H
#define STIM_IMAGE_H

#ifdef _WIN32
#undef max
#endif

#include <vector>
#include <iostream>
#include <limits>							//use limits and remove the MIN and MAX macros
#include <typeinfo>
#include <fstream>
#include <cstring>
#include <stim/image/CImg.h>


#include <stim/parser/filename.h>

namespace stim{
/// This static class provides the STIM interface for loading, saving, and storing 2D images.
/// Data is stored in an interleaved (BIP) format (default for saving and loading is RGB).

template <class T>
class image{

	T* img;										//pointer to the image data (interleaved RGB for color)
	size_t R[3];
	bool interleaved = true;					//by default the data is interleaved

	inline size_t X() const { return R[1]; }
	inline size_t Y() const { return R[2]; }
	inline size_t C() const { return R[0]; }

	void init(){								//initializes all variables, assumes no memory is allocated
		memset(R, 0, sizeof(size_t) * 3);		//set the resolution and number of channels to zero
		img = NULL;
	}

	void unalloc(){								//frees any resources associated with the image
		if(img)	free(img);						//if memory has been allocated, free it
	}


	void clear(){								//clears all image data
		unalloc();								//unallocate previous memory
		init();									//re-initialize the variables
	}

	void allocate(){
		unalloc();
		img = (T*) malloc( sizeof(T) * R[0] * R[1] * R[2] );	//allocate memory
		if (img == NULL) {
			std::cout << "stim::image ERROR - failed to allocate memory for image" << std::endl;
			exit(1);
		}
	}

	void allocate(size_t x, size_t y, size_t c){	//allocate memory based on the resolution
		R[0] = c; R[1] = x; R[2] = y;				//set the resolution
		allocate();									//allocate memory
	}

	inline size_t idx(size_t x, size_t y, size_t c = 0) const {
		return y * R[0] * R[1] + x * R[0] + c;
	}

	/// Returns the value for "white" based on the dynamic range (assumes white is 1.0 for floating point images)
	T white(){
		if (typeid(T) == typeid(double) || typeid(T) == typeid(float))
			return (T)1.0;
		else
			return std::numeric_limits<T>::max();
	}

public:

	size_t bytes() { return size() * sizeof(T); }

	/// Default constructor - creates an empty image object
	image(){ init(); }							//initialize all variables to zero, don't allocate any memory

	/// Constructor with a filename - loads the specified file
	image(std::string filename){				//constructor initialize the image with an image file
		init();
		load(filename);
	}

	/// Create a new image from scratch given a number of samples and channels
	image(size_t x, size_t y = 1, size_t c = 1){
		init();
		allocate(x, y, c);
	}

	/// Create a new image with the data given in 'data'
	image(T* data, size_t x, size_t y, size_t c = 1){
		init();
		allocate(x, y, c);
		memcpy(img, data, bytes());
	}

	/// Copy constructor - duplicates an image object
	image(const stim::image<T>& I){
		init();
		allocate(I.X(), I.Y(), I.C());
		memcpy(img, I.img, bytes());
	}

	/// Destructor - clear memory
	~image(){
		free(img);
	}

	stim::image<T>& operator=(const stim::image<T>& I){
		if(&I == this)									//handle self-assignment
			return *this;
		init();
		allocate(I.X(), I.Y(), I.C());
		memcpy(img, I.img, bytes());
		return *this;
	}

	//determines if a filename represents a valid file format that can be loaded/saved
	static bool test_filename(std::string f) {
		stim::filename fname = f;
		std::string ext = fname.extension();
		if (ext == "bmp" ||
			ext == "jpg" ||
			ext == "png" ||
			ext == "pbm" ||
			ext == "tif" )
			return true;
		else
			return false;
	}

	//save a Netpbm file
	void load_netpbm(std::string filename) {
		std::ifstream infile(filename.c_str(), std::ios::in | std::ios::binary);		//open an output file
		if (!infile) {
			std::cout << "Error opening input file in image::load_netpbm()" << std::endl;
			exit(1);
		}

		size_t nc;													//allocate space for the number of channels
		char format[2];												//allocate space to hold the image format tag
		infile.read(format, 2);										//read the image format tag
		infile.seekg(1, std::ios::cur);								//skip the newline character

		if (format[0] != 'P') {
			std::cout << "Error in image::load_netpbm() - file format tag is invalid: " << format[0] << format[1] << std::endl;
			exit(1);
		}
		if (format[1] == '5') nc = 1;								//get the number of channels from the format flag
		else if (format[1] == '6') nc = 3;
		else {
			std::cout << "Error in image::load_netpbm() - file format tag is invalid: " << format[0] << format[1] << std::endl;
			exit(1);
		}

		unsigned char c;								//stores a character
		while (infile.peek() == '#') {					//if the next character indicates the start of a comment
			while (true) {
				c = infile.get();
				if (c == 0x0A) break;
			}
		}

		std::string sw;									//create a string to store the width of the image
		while(true){
			c = infile.get();							//get a single character
			if (c == ' ') break;						//exit if we've encountered a space
			sw.push_back(c);							//push the character on to the string
		}
		size_t w = atoi(sw.c_str());					//convert the string into an integer

		std::string sh;
		while (true) {
			c = infile.get();
			if (c == 0x0A) break;
			sh.push_back(c);
		}

		while (true) {									//skip the maximum value
			c = infile.get();
			if (c == 0x0A) break;
		}
		size_t h = atoi(sh.c_str());					//convert the string into an integer

		allocate(w, h, nc);													//allocate space for the image
		unsigned char* buffer = (unsigned char*)malloc(w * h * nc);			//create a buffer to store the read data
		infile.read((char*)buffer, size());									//copy the binary data from the file to the image
		infile.close();														//close the file
		for (size_t n = 0; n < size(); n++) img[n] = (T)buffer[n];			//copy the buffer data into the image
		free(buffer);														//free the buffer array
	}
	

	//Copy N data points from source to dest, casting while doing so
	template<typename S, typename D>
	void type_copy(S* source, D* dest, size_t N) {
		if (typeid(S) == typeid(D))						//if both types are the same
			memcpy(dest, source, N * sizeof(S));		//just use a memcpy
		for (size_t n = 0; n < N; n++)					//otherwise, iterate through each element
			dest[n] = (D)source[n];							//copy and cast
	}
	/// Load an image from a file
	void load(std::string filename){
		//Use CImg to load the file
		cimg_library::CImg<T> cimg(filename.c_str());	//create a CImg object for the image file

		set_noninterleaved(cimg.data(), cimg.width(), cimg.height(), cimg.spectrum());
	}



	//save a Netpbm file
	void save_netpbm(std::string filename) {
		std::ofstream outfile(filename.c_str(), std::ios::out | std::ios::binary);		//open an output file
		if(!outfile) {
			std::cout << "Error generating output file in image::save_netpbm()" << std::endl;
			exit(1);
		}
		if (sizeof(T) != 1) {
			std::cout << "Error in image::save_netpbm() - data type must be 8-bit integer." << std::endl;
			exit(1);
		}
		std::string format;
		if (channels() == 1) outfile << "P5" << (char)0x0A;			//output P5 if the file is grayscale
		else if (channels() == 3) outfile << "P6" << (char)0x0A;		//output P6 if the file is color
		else {
			std::cout << "Error in image::save_netpbm() - data must be grayscale or RGB." << std::endl;
			exit(1);
		}
		size_t w = width();
		size_t h = height();
		outfile << w << " " << h << (char)0x0A;			//save the width and height
		outfile << "255" << (char)0x0A;								//output the maximum value
		outfile.write((const char*)img, size());			//write the binary data
		outfile.close();
	}

	//save a file
	void save(std::string filename){
		stim::filename file(filename);
		if (file.extension() == "raw" || file.extension() == "") {
			std::ofstream outfile(filename.c_str(), std::ios::binary);
			outfile.write((char*)img, sizeof(T) * R[0] * R[1] * R[2]);
			outfile.close();
		}

		cimg_library::CImg<T> cimg((unsigned int)R[1], (unsigned int)R[2], 1, (unsigned int)R[0]);
		get_noninterleaved(cimg.data());
		cimg.save(filename.c_str());
	}

	/// Returns an image cast to the specified format
	template<typename U>
	image<U> convert() {
		
		image<U> new_image(R[1], R[2], R[0]);					//create a new image with the destination data type

		size_t ni = R[0] * R[1] * R[2];							//calculate the number of data points in the image

		double inmax = (std::numeric_limits<T>::max)();				//get the maximum value for the input image
		double outmax = (std::numeric_limits<U>::max)();				//get the maximum value for the output image
		for (size_t i = 0; i < ni; i++) {							//for each pixel in the image
			if (img[i] > outmax) new_image(i) = outmax;			//if the source pixel is greater than the maximum destination pixel, set the output to maximum
			else new_image(i) = img[i];							//otherwise, copy the source value and cast it to the destination value		
		}
		return new_image;
	}

	void set_interleaved(T* buffer, size_t width, size_t height, size_t channels){
		allocate(width, height, channels);
		memcpy(img, buffer, bytes());
	}

	//create an image from an interleaved buffer
	void set_interleaved_rgb(T* buffer, size_t width, size_t height){
		set_interleaved(buffer, width, height, 3);
	}

	void set_interleaved_bgr(T* buffer, size_t width, size_t height){
		allocate(width, height, 3);
		T value;
		size_t i;
		for(size_t c = 0; c < C(); c++){								//copy directly
			for(size_t y = 0; y < Y(); y++){
				for(size_t x = 0; x < X(); x++){
					i = y * X() * C() + x * C() + (2-c);
					value = buffer[i];
					img[idx(x, y, c)] = value;
				}
			}
		}
	}

	void set_interleaved(T* buffer, size_t width, size_t height){
		set_interleaved_rgb(buffer, width, height);
	}

	//copies data in the given channel order as a non-interleaved image
	void set_noninterleaved(T* data, size_t width, size_t height, size_t chan) {
		allocate(width, height, chan);

		//for each channel
		for (size_t y = 0; y < Y(); y++) {
			for (size_t x = 0; x < X(); x++) {
				for (size_t c = 0; c < C(); c++) {
					img[idx(x, y, c)] = data[c * Y() * X() + y * X() + x];
				}
			}
		}
	}

	void get_interleaved_bgr(T* data){
		//for each channel
		T* source;
		if (C() == 3) {
			source = img;														//if the image has 3 channels, interleave all three
		}
		else if (C() == 4) {
			source = img + X() * Y();											//if the image has 4 channels, skip the alpha channel
		}
		else {
			throw std::runtime_error("ERROR: a BGR image must be 3 or 4 channels");	//throw an error if any other number of channels is provided
		}
		for(size_t y = 0; y < Y(); y++){
			for(size_t x = 0; x < X(); x++){
				for(size_t c = 0; c < 3; c++){
					data[y * X() * 3 + x * 3 + (2-c)] = source[y*3*R[1] + x*3 + c];
				}
			}
		}
	}

	void get_interleaved_rgb(T* data){
		memcpy(data, img, bytes());
	}

	//copies data in the given channel order as a non-interleaved image
	void get_noninterleaved(T* data){
		//for each channel
		for(size_t y = 0; y < Y(); y++){
			for(size_t x = 0; x < X(); x++){
				for(size_t c = 0; c < C(); c++){
					data[c * Y() * X() + y * X() + x] = img[idx(x, y, c)];
				}
			}
		}
	}

	/// Return an image representing a specified channel
	/// @param c is the channel to be returned
	image<T> channel(size_t c) const {		
		image<T> r(X(), Y(), 1);				//create a new image
		for(size_t x = 0; x < X(); x++){
			for(size_t y = 0; y < Y(); y++){
				r.img[r.idx(x, y, 0)] = img[idx(x, y, c)];
			}
		}
		return r;
	}

	/// Returns an std::vector containing each channel as a separate image
	std::vector< image<T> > split() const {
		std::vector< image<T> > r;			//create an image array
		r.resize(C());						//create images for each channel

		for (size_t c = 0; c < C(); c++) {	//for each channel
			r[c] = channel(c);				//copy the channel image to the array
		}
		return r;
	}

	/// Merge a series of single-channel images into a multi-channel image
	void merge(std::vector< image<T> >& list) {
		size_t x = list[0].width();				//calculate the size of the image
		size_t y = list[0].height();
		allocate(x, y, list.size());			//re-allocate the image
		for (size_t c = 0; c < list.size(); c++)		//for each channel
			set_channel(list[c].channel(0).data(), c);	//insert the channel into the output image
	}

	T& operator()(size_t x, size_t y, size_t c = 0){
		return img[idx(x, y, c)];
	}

	/// This function returns a pixel reference based on a 1D index into the image
	T& operator()(size_t i) {
		return img[i];
	}

	/// Set all elements in the image to a given scalar value

	/// @param v is the value used to set all values in the image
	void set_all(T v) {														//set all elements of the image to a given value v
		size_t N = size();
		for (size_t n = 0; n < N; n++) img[n] = v;
	}
	image<T> operator=(T v){
		set_all(v);
		return *this;
	}

	/// invert the image, given a specified maximum value (ex. maxval = 255, I' = 255 - I)
	/*image<T> invert(T maxval) {
		image<T> result(width(), height(), channels());		//create a new image
		size_t N = size();									//get the number of elements in the image
		for (size_t n = 0; n < N; n++)
			result.data()[n] = maxval - img[n];				//perform the inversion and save the result to the new image
		return result;
	}*/

	/// Stretch the contrast of the image such that the minimum and maximum intensity match the given values
	image<T> stretch(T low, T high) {
		T maxval = maxv();
		T minval = minv();
		image<T> result = *this;				//create a new image for output
		if (maxval == minval) {					//if the minimum and maximum values are the same, return an image composed of low
			result = low;
			return result;
		}	
		
		size_t N = size();						//get the number of values in the image
		T range = maxval - minval;			//calculate the current range of the image
		T desired_range = high - low;		//calculate the desired range of the image
		for (size_t n = 0; n < N; n++) {		//for each element in the image
			result.data()[n] = desired_range * (img[n] - minval) / range + low;
		}
		return result;
	}

	/// Add a border of width w with the given value around the image
	/// @param w specifies the total size of the border
	/// @param T is the pixel value (all channels will be the same)
	image<T> border(size_t w, T value = 0) {
		image<T> result(width() + w * 2, height() + w * 2, channels());						//create an output image
		result = value;														//assign the border value to all pixels in the new image
		for (size_t y = 0; y < height(); y++) {								//for each pixel in the original image
			for (size_t x = 0; x < width(); x++) {
				size_t n = (y + w) * (width() + w * 2) + x + w;				//calculate the index of the corresponding pixel in the result image
				size_t n0 = idx(x,y);										//calculate the index for this pixel in the original image
				result.data()[n] = img[n0];									// copy the original image to the result image afer the border area
			}
		}
		return result;
	}

	/// Adds curcular padding for the specified number of pixels - in this case replicating the boundary pixels
	image<T> pad_replicate(size_t p) {
		image<T> result(width() + p * 2, height() + p * 2, channels());						//create an output image
		result = 0;
		//result = value;														//assign the border value to all pixels in the new image
		for (size_t y = 0; y < height(); y++) {								//for each pixel in the original image
			for (size_t x = 0; x < width(); x++) {
				size_t n = (y + p) * (width() + p * 2) + x + p;				//calculate the index of the corresponding pixel in the result image
				size_t n0 = idx(x, y);										//calculate the index for this pixel in the original image
				result.data()[n] = img[n0];									// copy the original image to the result image afer the border area
			}
		}
		size_t l = p;
		size_t r = p + width() - 1;
		size_t t = p;
		size_t b = p + height() - 1;
		for (size_t y = 0; y < p; y++) for (size_t x = l; x <= r; x++) result(x, y) = result(x, t);						//pad the top
		for (size_t y = b + 1; y < result.height(); y++) for (size_t x = l; x <= r; x++) result(x, y) = result(x, b);	//pad the bottom
		for (size_t y = t; y <= b; y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, y);						//pad the left
		for (size_t y = t; y <= b; y++) for (size_t x = r+1; x < result.width(); x++) result(x, y) = result(r, y);		//pad the right
		for (size_t y = 0; y < t; y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, t);						//pad the top left
		for (size_t y = 0; y < t; y++) for (size_t x = r+1; x < result.width(); x++) result(x, y) = result(r, t);		//pad the top right
		for (size_t y = b+1; y < result.height(); y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, b);		//pad the bottom left
		for (size_t y = b+1; y < result.height(); y++) for (size_t x = r + 1; x < result.width(); x++) result(x, y) = result(r, b);		//pad the bottom right
		return result;
	}

	/// Copy the given data to the specified channel

	/// @param c is the channel number that the data will be copied to
	/// @param buffer is a pointer to the image to be copied to channel c

	void set_channel(T* buffer, size_t c){
		size_t x, y;
		for(y = 0; y < Y(); y++){
			for(x = 0; x < X(); x++){
				img[idx(x, y, c)] = buffer[y * X() + x];
			}
		}
	}

	/// Set the specified channel to a constant value

	/// @param c is the channel number that the data will be copied to
	/// @param buffer is a pointer to the image to be copied to channel c

	void set_channel(T val, size_t c) {
		size_t x, y;
		for (y = 0; y < Y(); y++) {
			for (x = 0; x < X(); x++) {
				img[idx(x, y, c)] = val;
			}
		}
	}

	size_t channels() const{
		return C();
	}

	size_t width() const{
		return X();
	}

	size_t height() const{
		return Y();
	}

	T* data(){
		return img;
	}

	//returns the size (number of values) of the image
	size_t size(){ return C() * X() * Y(); }

	/// Returns the number of nonzero values
	size_t nnz(){

		size_t N = X() * Y() * C();

		size_t nz = 0;
		for(size_t n = 0; n < N; n++)
			if(img[n] != 0) nz++;

		return nz;	//return the number of nonzero pixels

	}

	//this function returns indices of pixels that have nonzero values
	std::vector<size_t> sparse_idx(){

		std::vector<size_t> s;				//allocate an array
		s.resize(nnz());					//allocate space in the array

		size_t N = size();
		//size_t C = channels();

		//T* ptr = img.data();				//get a pointer to the image data

		size_t i = 0;
		for(size_t n = 0; n < N; n++){
			if(img[n] != 0){
				s[i] = n;
				i++;
			}
		}

		return s;			//return the index list
	}


	/// Returns the maximum pixel value in the image
	T maxv(){
		T max_val = img[0];				//initialize the maximum value to the first one
		size_t N = size();	//get the number of pixels

		for (size_t n=0; n<N; n++){		//for every value

			if (img[n] > max_val){			//if the value is higher than the current max
				max_val = img[n];
			}
		}
		return max_val;
	}

	/// Returns the maximum pixel value in the image
	T minv(){
		T min_val = img[0];				//initialize the maximum value to the first one
		size_t N = size();	//get the number of pixels

		for (size_t n=0; n<N; n++){		//for every value
			if (img[n] < min_val){			//if the value is higher than the current max
				min_val = img[n];
			}
		}

		return min_val;
	}

	/// Invert an image by calculating I1 = alpha - I0, where alpha is the maximum image value
	image<T> invert(T white_val){
		size_t N = size();						//calculate the total number of values in the image
		image<T> r(X(), Y(), C());				//allocate space for the resulting image
		for(size_t n = 0; n < N; n++)
			r.img[n] = white_val - img[n];		//perform the inversion

		return r;								//return the inverted image
	}

	image<T> crop(size_t x0, size_t y0, size_t w, size_t h){
		image<T> result(w, h, C());								//create the output cropped image

		size_t srci;
		size_t dsti;
		size_t line_bytes = w * C();							//calculate the number of bytes in a line
		for (size_t yi = 0; yi < h; yi++) {						//for each row in the cropped image
			srci = (y0 + yi) * X() * C() + x0 * C();			//calculate the source index
			dsti = yi * w * C();								//calculate the destination index
			memcpy(&result.img[dsti], &img[srci], line_bytes);	//copy the data
		}
		return result;
	}

	//crop regions given by an array of 1D index values
	std::vector< image<T> > crop_idx(size_t w, size_t h, std::vector<size_t> idx) {
		std::vector< image<T> > result(idx.size());										//create an array of image files to return
		for (size_t i = 0; i < idx.size(); i++) {										//for each specified index point
			size_t y = idx[i] / X();													//calculate the y coordinate from the 1D index (center of ROI)
			size_t x = idx[i] - y * X();												//calculate the x coordinate (center of ROI)
			y -= w / 2;																	//update x and y values to reflect the lower corner of the ROI
			x -= h / 2;
			result[i] = crop(x, y, w, h);												//get the cropped image and store it in the result array
		}
		return result;
	}

	//operator functions
	image<T> operator+(image<T> rhs) {
		size_t N = size();						//calculate the total number of values in the image
		image<T> r(X(), Y(), C());				//allocate space for the resulting image
		for (size_t n = 0; n < N; n++)
			r.img[n] = img[n] + rhs.img[n];		//perform the inversion
		return r;								//return the inverted image
	}

	image<T> srgb2lab(){
		std::cout<<"ERROR stim::image::srgb2lab - function has been broken, re-implement."<<std::endl;
		exit(1);
	}

	image<T> convolve2(image<T> mask){
		std::cout<<"ERROR stim::image::convolve2 - function has been broken, and shouldn't really be in here."<<std::endl;
		exit(1);
	}


	image<T> rotate(float angle, float cx, float cy){
		std::cout<<"ERROR stim::image::rotate - function has been broken, and shouldn't really be in here."<<std::endl;
		exit(1);
	}

	// leila's code for non_interleaving data in 3D
	//create an data set from an interleaved buffer
	void set_interleaved3(T* buffer, size_t width, size_t height, size_t depth, size_t channels = 3){
		std::cout<<"ERROR stim::image::set_interleaved3 - stim::image no longer supports 3D images."<<std::endl;
		exit(1);
	}

	/// Casting operator, casts every value in an image to a different data type V
	template<typename V>
	operator image<V>() {
		image<V> r(X(), Y(), C());					//create a new image
		std::copy(img, img + size(), r.data());		//copy and cast the data
		return r;									//return the new image
	}

};

};		//end namespace stim


#endif