camera.h
4.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include <stim/math/vector.h>
#include <stim/math/quaternion.h>
#include <stim/math/matrix.h>
#include <ostream>
#ifndef STIM_CAMERA_H
#define STIM_CAMERA_H
namespace stim{
class camera
{
vec3<float> d; //direction that the camera is pointing
vec3<float> p; //position of the camera
vec3<float> up; //"up" direction
float focus; //focal length of the camera
float fov;
//private function makes sure that the up vector is orthogonal to the direction vector and both are normalized
void stabalize()
{
vec3<float> side = up.cross(d);
up = d.cross(side);
up = up.norm();
d = d.norm();
}
public:
void setPosition(vec3<float> pos)
{
p = pos;
}
void setPosition(float x, float y, float z){setPosition(vec3<float>(x, y, z));}
void setFocalDistance(float distance){focus = distance;}
void setFOV(float field_of_view){fov = field_of_view;}
void LookAt(vec3<float> pos)
{
//find the new direction
d = pos - p;
//find the distance from the look-at point to the current position
focus = d.len();
//stabalize the camera
stabalize();
}
void LookAt(float px, float py, float pz){LookAt(vec3<float>(px, py, pz));}
void LookAt(vec3<float> pos, vec3<float> new_up){up = new_up; LookAt(pos);}
void LookAt(float px, float py, float pz, float ux, float uy, float uz){LookAt(vec3<float>(px, py, pz), vec3<float>(ux, uy, uz));}
void LookAtDolly(float lx, float ly, float lz)
{
//find the current focus point
vec3<float> f = p + focus*d;
vec3<float> T = vec3<float>(lx, ly, lz) - f;
p = p + T;
}
void Dolly(vec3<float> direction)
{
p = p+direction;
}
void Dolly(float x, float y, float z){Dolly(vec3<float>(x, y, z));}
void Push(float delta)
{
if(delta > focus)
delta = focus;
focus -= delta;
Dolly(d*delta);
}
void Pan(float theta_x, float theta_y, float theta_z)
{
//x rotation is around the up axis
quaternion<float> qx;
qx.CreateRotation(theta_x, up[0], up[1], up[2]);
//y rotation is around the side axis
vec3<float> side = up.cross(d);
quaternion<float> qy;
qy.CreateRotation(theta_y, side[0], side[1], side[2]);
//z rotation is around the direction vector
quaternion<float> qz;
qz.CreateRotation(theta_z, d[0], d[1], d[2]);
//combine the rotations in x, y, z order
quaternion<float> final = qz*qy*qx;
//get the rotation matrix
matrix<float, 3> rot_matrix = final.toMatrix3();
//apply the rotation
d = rot_matrix*d;
up = rot_matrix*up;
//stabalize the camera
stabalize();
}
void Pan(float theta_x){Pan(theta_x, 0, 0);}
void Tilt(float theta_y){Pan(0, theta_y, 0);}
void Twist(float theta_z){Pan(0, 0, theta_z);}
void Zoom(float delta)
{
fov -= delta;
if(fov < 0.5)
fov = 0.5;
if(fov > 180)
fov = 180;
}
void OrbitFocus(float theta_x, float theta_y)
{
//find the focal point
vec3<float> focal_point = p + focus*d;
//center the coordinate system on the focal point
vec3<float> centered = p - (focal_point - vec3<float>(0, 0, 0));
//create the x rotation (around the up vector)
quaternion<float> qx;
qx.CreateRotation(theta_x, up[0], up[1], up[2]);
centered = vec3<float>(0, 0, 0) + qx.toMatrix3()*(centered - vec3<float>(0, 0, 0));
//get a side vector for theta_y rotation
vec3<float> side = up.cross((vec3<float>(0, 0, 0) - centered).norm());
quaternion<float> qy;
qy.CreateRotation(theta_y, side[0], side[1], side[2]);
centered = vec3<float>(0, 0, 0) + qy.toMatrix3()*(centered - vec3<float>(0, 0, 0));
//perform the rotation on the centered camera position
//centered = final.toMatrix()*centered;
//re-position the camera
p = centered + (focal_point - vec3<float>(0, 0, 0));
//make sure we are looking at the focal point
LookAt(focal_point);
//stabalize the camera
stabalize();
}
void Slide(float u, float v)
{
vec3<float> V = up.norm();
vec3<float> U = up.cross(d).norm();
p = p + (V * v) + (U * u);
}
//accessor methods
vec3<float> getPosition(){return p;}
vec3<float> getUp(){return up;}
vec3<float> getDirection(){return d;}
vec3<float> getLookAt(){return p + focus*d;}
float getFOV(){return fov;}
//output the camera settings
void print(std::ostream& output)
{
output<<"Position: "<<p.str()<<std::endl;
}
friend std::ostream& operator<<(std::ostream& out, const camera& c)
{
out<<"Position: "<<c.p.str()<<std::endl;
out<<"Direction: "<<c.d.str()<<std::endl;
out<<"Up: "<<c.up.str()<<std::endl;
out<<"Focal Distance: "<<c.focus<<std::endl;
return out;
}
//constructor
camera()
{
p = vec3<float>(0, 0, 0);
d = vec3<float>(0, 0, 1);
up = vec3<float>(0, 1, 0);
focus = 1;
fov = 60;
}
/// Outputs the camera information as a string
std::string str(){
std::stringstream ss;
ss<<p.str()<<"----->"<<(p + d * focus).str();
return ss.str();
}
};
}
#endif