circle.h
5.35 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#ifndef STIM_CIRCLE_H
#define STIM_CIRCLE_H
#include <stim/cuda/cudatools/callable.h>
#include <stim/math/plane.h>
#include <stim/math/vector.h>
#include <stim/math/triangle.h>
#include <stim/math/constants.h>
#include <assert.h>
#include <algorithm>
#include <iostream>
namespace stim{
template <typename T>
class circle : plane<T>
{
private:
//stim::vec3<T> Y;
T R; //radius of the circle
/*CUDA_CALLABLE void
init()
{
Y = U.cross(N).norm();
}*/
public:
using stim::plane<T>::n;
using stim::plane<T>::P;
using stim::plane<T>::N;
using stim::plane<T>::U;
using stim::plane<T>::rotate;
using stim::plane<T>::setU;
using stim::plane<T>::init;
///base constructor
///@param th value of the angle of the starting point from 0 to 360.
CUDA_CALLABLE
circle() : plane<T>()
{
init();
}
///create a circle given a size and position in Z space.
///@param size: size of the rectangle in ND space.
///@param z_pos z coordinate of the rectangle.
CUDA_CALLABLE
circle(T radius, T z_pos = (T)0) : plane<T>(z_pos)
{
//center(stim::vec3<T>(0, 0, z_pos));
//scale(size);
//init();
R = radius;
}
///create a rectangle from a center point, normal
///@param c: x,y,z location of the center.
///@param n: x,y,z direction of the normal.
CUDA_CALLABLE
circle(vec3<T> c, vec3<T> n = vec3<T>(0,0,1)) : plane<T>(n, c)
{
//center(c);
//normal(n);
//init();
R = (T)1;
}
/*///create a rectangle from a center point, normal, and size
///@param c: x,y,z location of the center.
///@param s: size of the rectangle.
///@param n: x,y,z direction of the normal.
CUDA_CALLABLE
circle(vec3<T> c, T s, vec3<T> n = vec3<T>(0,0,1)) : plane<T>()
{
init();
center(c);
rotate(n, U, Y);
scale(s);
}
*/
///create a rectangle from a center point, normal, and size
///@param c: x,y,z location of the center.
///@param s: size of the rectangle.
///@param n: x,y,z direction of the normal.
///@param u: x,y,z direction for the zero vector (from where the rotation starts)
CUDA_CALLABLE
circle(vec3<T> c, T r, vec3<T> n = vec3<T>(0,0,1), vec3<T> u = vec3<T>(1, 0, 0)) : plane<T>()
{
P = c;
N = n;
setU(u);
R = r;
//init();
//setU(u);
// U = u;
//center(c);
//normal(n);
//scale(s);
}
///scales the circle by a certain factor
///@param factor: the factor by which the dimensions of the shape are scaled.
CUDA_CALLABLE
void scale(T factor)
{
//U *= factor;
//Y *= factor;
R *= factor;
}
///set the radius of circle to a certain value
///@param value: the new radius of the circle
CUDA_CALLABLE
void set_R(T value)
{
R = value;
}
///sets the normal for the cirlce
///@param n: x,y,z direction of the normal.
CUDA_CALLABLE void
normal(vec3<T> n){
rotate(n);
}
///sets the center of the circle.
///@param n: x,y,z location of the center.
CUDA_CALLABLE void
center(vec3<T> p){
P = p;
}
///boolean comparison
bool
operator==(const circle<T> & rhs)
{
if(P == rhs.P && U == rhs.U)
return true;
else
return false;
}
//returns the point in world space corresponding to the polar coordinate (r, theta)
CUDA_CALLABLE stim::vec3<T>
p(T r, T theta) {
T u = r * cos(theta); //calculate the coordinates in the planar space defined by the circle
T v = r * sin(theta);
vec3<T> V = U.cross(N); //calculate the orthogonal vector V
return P + U * u + V * v; //calculate the cartesian coordinate of the specified point
}
//returns the point in world space corresponding to the value theta at radius R
CUDA_CALLABLE stim::vec3<T>
p(T theta) {
return p(R, theta);
}
//get the world space value given the polar coordinates (r, theta)
///get the world space value given the planar coordinates a, b in [0, 1]
/*CUDA_CALLABLE stim::vec3<T> p(T a, T b)
{
stim::vec3<T> result;
vec3<T> A = this->P - this->U * (T)0.5 - Y * (T)0.5;
result = A + this->U * a + Y * b;
return result;
}*/
///parenthesis operator returns the world space given rectangular coordinates a and b in [0 1]
CUDA_CALLABLE stim::vec3<T> operator()(T r, T theta)
{
return p(r, theta);
}
//parenthesis operator returns the world space coordinate at the edge of the circle given theta
CUDA_CALLABLE stim::vec3<T> operator()(T theta) {
return p(theta);
}
///returns a vector with the points on the initialized circle.
///connecting the points results in a circle.
///@param n: integer for the number of points representing the circle.
std::vector< stim::vec3<T> > points(unsigned n) {
std::vector< stim::vec3<T> > result(n); //initialize a vector of n points
float dt = stim::TAU / n;
for (unsigned i = 0; i < n; i++)
result[i] = p(i * dt); //calculate a point on the edge of the circle
return result;
}
///returns a vector with the points on the initialized circle
///connecting the points results in a circle
///@param n: integer for the number of points representing the circle
///the only difference between points and glpoints is that the first point appears twice in the returning lists
std::vector< stim::vec3<T> > glpoints(unsigned n) {
std::vector< stim::vec3<T> > result(n + 1);
float dt = stim::TAU / n;
for (unsigned i = 0; i < n; i++)
result[i] = p(i * dt);
result[n] = p(0); //close the circle!
return result;
}
std::string str() const
{
std::stringstream ss;
ss << "r = "<<R<<" (P=" << P.str() << ", N=" << N.str() << ", U=" << U.str() << ")";
return ss.str();
}
};
}
#endif