realfield.cuh
7.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#ifndef RTS_REALFIELD_H
#define RTS_REALFIELD_H
#include "../visualization/colormap.h"
#include "../envi/envi.h"
#include "../math/rect.h"
#include "../cuda/devices.h"
#include "cublas_v2.h"
#include <cuda_runtime.h>
namespace stim{
//multiply R = X * Y
template<typename T>
__global__ void gpu_realfield_multiply(T* R, T* X, T* Y, unsigned int r0, unsigned int r1){
int iu = blockIdx.x * blockDim.x + threadIdx.x;
int iv = blockIdx.y * blockDim.y + threadIdx.y;
//make sure that the thread indices are in-bounds
if(iu >= r0 || iv >= r1) return;
//compute the index into the field
int i = iv*r0 + iu;
//calculate and store the result
R[i] = X[i] * Y[i];
}
template<typename P, unsigned int N = 1, bool positive = false>
class realfield{
P* X[N]; //an array of N gpu pointers for each field component
int R[2]; //resolution of the slice
rect<P> shape;
void process_filename(std::string name, std::string &prefix, std::string &postfix,
std::string &ext, unsigned int &digits)
{
std::stringstream ss(name);
std::string item;
std::vector<std::string> elems;
while(std::getline(ss, item, '.')) //split the string at the '.' character (filename and extension)
{
elems.push_back(item);
}
prefix = elems[0]; //prefix contains the filename (with wildcard '?' characters)
ext = elems[1]; //file extension (ex. .bmp, .png)
ext = std::string(".") + ext; //add a period back into the extension
size_t i0 = prefix.find_first_of("?"); //find the positions of the first and last wildcard ('?'')
size_t i1 = prefix.find_last_of("?");
postfix = prefix.substr(i1+1);
prefix = prefix.substr(0, i0);
digits = i1 - i0 + 1; //compute the number of wildcards
}
void init()
{
for(unsigned int n=0; n<N; n++)
X[n] = NULL;
}
void destroy()
{
for(unsigned int n=0; n<N; n++)
if(X[n] != NULL)
HANDLE_ERROR(cudaFree(X[n]));
}
public:
//field constructor
realfield()
{
R[0] = R[1] = 0;
init();
//std::cout<<"realfield CONSTRUCTOR"<<std::endl;
}
realfield(unsigned int x, unsigned int y)
{
//set the resolution
R[0] = x;
R[1] = y;
//allocate memory on the GPU
for(unsigned int n=0; n<N; n++)
{
HANDLE_ERROR(cudaMalloc( (void**)&X[n], sizeof(P) * R[0] * R[1] ));
}
//shape = rect<P>(vec<P>(-1, -1, 0), vec<P>(-1, 1, 0), vec<P>(1, 1, 0)); //default geometry
clear(); //zero the field
//std::cout<<"realfield CONSTRUCTOR"<<std::endl;
}
~realfield()
{
destroy();
//std::cout<<"realfield DESTRUCTOR"<<std::endl;
}
P* ptr(unsigned int n = 0)
{
if(n < N)
return X[n];
else return NULL;
}
//set all components of the field to zero
void clear()
{
for(unsigned int n=0; n<N; n++)
if(X[n] != NULL)
HANDLE_ERROR(cudaMemset(X[n], 0, sizeof(P) * R[0] * R[1]));
}
void toImage(std::string filename, unsigned int n, P vmin, P vmax, stim::colormapType cmap = stim::cmBrewer)
{
stim::gpu2image<P>(X[n], filename, R[0], R[1], vmin, vmax, cmap);
}
void toImages(std::string filename, bool global_max = true, stim::colormapType cmap = stim::cmBrewer)
{
std::string prefix, postfix, extension;
unsigned int digits;
process_filename(filename, prefix, postfix, extension, digits); //process the filename for wild cards
cublasStatus_t stat;
cublasHandle_t handle;
//create a CUBLAS handle
stat = cublasCreate(&handle);
if(stat != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"CUBLAS Error: initialization failed"<<std::endl;
exit(1);
}
int L = R[0] * R[1]; //compute the number of discrete points in a slice
int result; //result of the max operation
P maxVal[N]; //array stores minimum and maximum values
P maxAll = 0; //largest value in the data set
//compute the maximum value for each vector component
for(int n=0; n<N; n++)
{
if(sizeof(P) == 4)
stat = cublasIsamax(handle, L, (const float*)X[n], 1, &result);
else
stat = cublasIdamax(handle, L, (const double*)X[n], 1, &result);
result -= 1; //adjust for 1-based indexing
if(stat != CUBLAS_STATUS_SUCCESS) //if there was a GPU error, terminate
{
std::cout<<"CUBLAS Error: failure finding maximum value."<<std::endl;
exit(1);
}
//retrieve the maximum value for this slice and store it in the maxVal array
HANDLE_ERROR(cudaMemcpy(&maxVal[n], X[n] + result, sizeof(P), cudaMemcpyDeviceToHost));
if(abs(maxVal[n]) > maxAll) //if maxVal is larger, update the maxAll variable
maxAll = maxVal[n];
}
cublasDestroy(handle); //destroy the CUBLAS handle
P outputMax = abs(maxAll); //maximum value used for each output image
for(int n=0; n<N; n++) //for each image
{
if(!global_max) outputMax = maxVal[n]; //calculate the maximum value for this image
stringstream ss; //assemble the file name
ss<<prefix<<std::setfill('0')<<std::setw(digits)<<n<<postfix<<extension;
std::cout<<ss.str()<<std::endl;
if(positive) //if the image is positive
toImage(ss.str(), n, 0, abs(outputMax), cmap); //save the image using the global maximum
else
toImage(ss.str(), n, -abs(outputMax), abs(outputMax), cmap); //save the image using the global maximum
}
}
//assignment operator
realfield & operator= (const realfield & rhs)
{
//de-allocate any existing GPU memory
destroy();
//copy the slice resolution
R[0] = rhs.R[0];
R[1] = rhs.R[1];
for(unsigned int n=0; n<N; n++)
{
//allocate the necessary memory
HANDLE_ERROR(cudaMalloc(&X[n], sizeof(P) * R[0] * R[1]));
//copy the slice
HANDLE_ERROR(cudaMemcpy(X[n], rhs.X[n], sizeof(P) * R[0] * R[1], cudaMemcpyDeviceToDevice));
}
//std::cout<<"Assignment operator."<<std::endl;
return *this;
}
//multiply two fields (element-wise multiplication)
realfield<P, N, positive> operator* (const realfield & rhs){
int maxThreads = stim::maxThreadsPerBlock(); //compute the optimal block size
int SQRT_BLOCK = (int)std::sqrt((float)maxThreads);
//create one thread for each detector pixel
dim3 dimBlock(SQRT_BLOCK, SQRT_BLOCK);
dim3 dimGrid((R[0] + SQRT_BLOCK -1)/SQRT_BLOCK, (R[1] + SQRT_BLOCK - 1)/SQRT_BLOCK);
//create a scalar field to store the result
realfield<P, N, positive> result(R[0], R[1]);
for(int n=0; n<N; n++)
stim::gpu_realfield_multiply <<<dimGrid, dimBlock>>> (result.X[n], X[n], rhs.X[n], R[0], R[1]);
return result;
}
///copy constructor
realfield(const realfield &rhs)
{
//first make a shallow copy
R[0] = rhs.R[0];
R[1] = rhs.R[1];
for(unsigned int n=0; n<N; n++)
{
//do we have to make a deep copy?
if(rhs.X[n] == NULL)
X[n] = NULL; //no
else
{
//allocate the necessary memory
HANDLE_ERROR(cudaMalloc(&X[n], sizeof(P) * R[0] * R[1]));
//copy the slice
HANDLE_ERROR(cudaMemcpy(X[n], rhs.X[n], sizeof(P) * R[0] * R[1], cudaMemcpyDeviceToDevice));
}
}
}
};
} //end namespace rts
#endif