spharmonics.h
10.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#ifndef STIM_SPH_HARMONICS
#define STIM_SPH_HARMONICS
#include <complex>
#include <boost/math/special_functions/spherical_harmonic.hpp>
#include <stim/math/constants.h>
#include <stim/math/random.h>
#include <vector>
#define WIRE_SCALE 1.001
namespace stim {
template<class T>
class spharmonics {
public:
std::vector<T> C; //list of SH coefficients
protected:
unsigned int mcN; //number of Monte-Carlo samples
unsigned int coeff_1d(unsigned int l, int m) { //convert (l,m) to i (1D coefficient index)
return pow(l + 1, 2) - (l - m) - 1;
}
void coeff_2d(size_t c, unsigned int& l, int& m) { //convert a 1D coefficient index into (l, m)
l = (unsigned int)ceil(sqrt((double)c + 1)) - 1; //the major index is equal to sqrt(c) - 1
m = (int)(c - (size_t)(l * l)) - (int)l; //the minor index is calculated by finding the difference
}
public:
spharmonics() {
mcN = 0;
}
spharmonics(size_t c) : spharmonics() {
resize(c);
}
void push(T c) {
C.push_back(c);
}
void resize(unsigned int n) {
C.resize(n);
}
void setc(unsigned int l, int m, T value) {
unsigned int c = coeff_1d(l, m);
C[c] = value;
}
T getc(unsigned int l, int m) {
unsigned int c = coeff_1d(l, m);
return C[c];
}
void setc(unsigned int c, T value) {
C[c] = value;
}
unsigned int getSize() const {
return C.size();
}
std::vector<T> getC() const {
return C;
}
//calculate the value of the SH basis function (l, m) at (theta, phi)
//here, theta = [0, PI], phi = [0, 2*PI]
T SH(unsigned int l, int m, T theta, T phi) {
//std::complex<T> result = boost::math::spherical_harmonic(l, m, phi, theta);
//return result.imag() + result.real();
//this calculation is based on calculating the real spherical harmonics:
// https://en.wikipedia.org/wiki/Spherical_harmonics#Addition_theorem
if (m < 0) {
return sqrt(2.0) * pow(-1, m) * boost::math::spherical_harmonic(l, abs(m), phi, theta).imag();
}
else if (m == 0) {
return boost::math::spherical_harmonic(l, m, phi, theta).real();
}
else {
return sqrt(2.0) * pow(-1, m) * boost::math::spherical_harmonic(l, m, phi, theta).real();
}
}
/// Calculate the spherical harmonic result given a 1D coefficient index
T SH(size_t c, T theta, T phi) {
unsigned int l;
int m;
coeff_2d(c, l, m);
return SH(l, m, theta, phi);
}
/// Initialize Monte-Carlo sampling of a function using N spherical harmonics coefficients
/// @param N is the number of spherical harmonics coefficients used to represent the user function
void mcBegin(unsigned int coefficients) {
C.resize(coefficients, 0);
mcN = 0;
}
void mcBegin(unsigned int l, int m) {
unsigned int c = pow(l + 1, 2) - (l - m);
mcBegin(c);
}
void mcSample(T theta, T phi, T val) {
int l, m;
T sh;
l = m = 0;
for (unsigned int i = 0; i < C.size(); i++) {
sh = SH(l, m, theta, phi);
C[i] += sh * val;
m++; //increment m
//if we're in a new tier, increment l and set m = -l
if (m > l) {
l++;
m = -l;
}
} //end for all coefficients
//increment the number of samples
mcN++;
} //end mcSample()
void mcEnd() {
//divide all coefficients by the number of samples
for (unsigned int i = 0; i < C.size(); i++)
C[i] /= mcN;
}
/// Generates a PDF describing the probability distribution of points on a spherical surface
/// @param sph_pts is a list of points in spherical coordinates (theta, phi) where theta = [0, 2pi] and phi = [0, pi]
/// @param l is the maximum degree of the spherical harmonic function
/// @param m is the maximum order
void pdf(std::vector<stim::vec3<T> > sph_pts, unsigned int l, int m) {
mcBegin(l, m); //begin spherical harmonic sampling
unsigned int nP = sph_pts.size();
for (unsigned int p = 0; p < nP; p++) {
mcSample(sph_pts[p][1], sph_pts[p][2], 1.0);
}
mcEnd();
}
void pdf(std::vector<stim::vec3<T> > sph_pts, size_t c) {
unsigned int l;
int m;
coeff_2d(c, l, m);
pdf(sph_pts, l, m);
}
/// Project a set of samples onto a spherical harmonic basis
void project(std::vector<stim::vec3<T> > sph_pts, unsigned int l, int m) {
mcBegin(l, m); //begin spherical harmonic sampling
unsigned int nP = sph_pts.size();
for (unsigned int p = 0; p < nP; p++) {
mcSample(sph_pts[p][1], sph_pts[p][2], sph_pts[p][0]);
}
mcEnd();
}
void project(std::vector<stim::vec3<T> > sph_pts, size_t c) {
unsigned int l;
int m;
coeff_2d(c, l, m);
project(sph_pts, l, m);
}
/// Generates a PDF describing the density distribution of points on a sphere
/// @param sph_pts is a list of points in cartesian coordinates
/// @param l is the maximum degree of the spherical harmonic function
/// @param m is the maximum order
/// @param c is the centroid of the points in sph_pts. DEFAULT 0,0,0
/// @param n is the number of points of the surface of the sphere used to create the PDF. DEFAULT 1000
/// @param norm, a boolean that sets where the output vectors will be normalized between 0 and 1.
/// @param
/*void pdf(std::vector<stim::vec3<T> > sph_pts, unsigned int l, int m, stim::vec3<T> c = stim::vec3<T>(0, 0, 0), unsigned int n = 1000, bool norm = true, std::vector<T> w = std::vector<T>())
{
std::vector<double> weights; ///the weight at each point on the surface of the sphere.
// weights.resize(n);
unsigned int nP = sph_pts.size();
std::vector<stim::vec3<T> > sphere = stim::Random<T>::sample_sphere(n, 1.0, stim::TAU);
if (w.size() < nP)
w = std::vector<T>(nP, 1.0);
for (int i = 0; i < n; i++)
{
T val = 0;
for (int j = 0; j < nP; j++)
{
stim::vec3<T> temp = sph_pts[j] - c;
if (temp.dot(sphere[i]) > 0)
val += pow(temp.dot(sphere[i]), 4)*w[j];
}
weights.push_back(val);
}
mcBegin(l, m); //begin spherical harmonic sampling
if (norm)
{
T min = *std::min_element(weights.begin(), weights.end());
T max = *std::max_element(weights.begin(), weights.end());
for (unsigned int i = 0; i < n; i++)
{
stim::vec3<T> sph = sphere[i].cart2sph();
mcSample(sph[1], sph[2], (weights[i] - min) / (max - min));
}
}
else {
for (unsigned int i = 0; i < n; i++)
{
stim::vec3<T> sph = sphere[i].cart2sph();
mcSample(sph[1], sph[2], weights[i]);
}
}
mcEnd();
}*/
std::string str() {
std::stringstream ss;
int l, m;
l = m = 0;
for (unsigned int i = 0; i < C.size(); i++) {
ss << C[i] << '\t';
m++; //increment m
//if we're in a new tier, increment l and set m = -l
if (m > l) {
l++;
m = -l;
ss << std::endl;
}
}
return ss.str();
}
/// Returns the value of the function at coordinate (theta, phi)
T p(T theta, T phi) {
T fx = 0;
int l = 0;
int m = 0;
for (unsigned int i = 0; i < C.size(); i++) {
fx += C[i] * SH(l, m, theta, phi);
m++;
if (m > l) {
l++;
m = -l;
}
}
return fx;
}
/// Returns the derivative of the spherical function with respect to theta
/// return value is in cartesian coordinates
vec3<T> dtheta(T theta, T phi, T d = 0.01) {
T r = p(theta, phi); //calculate the value of the spherical function at three points
T rt = p(theta + d, phi);
//double rp = p(theta, phi + d);
vec3<T> s(r, theta, phi); //get the spherical coordinate position for all three points
vec3<T> st(rt, theta + d, phi);
//vec3<double> sp(rp, theta, phi + d);
vec3<T> c = s.sph2cart();
vec3<T> ct = st.sph2cart();
//vec3<double> cp = sp.sph2cart();
vec3<T> dt = (ct - c)/d; //calculate the derivative
return dt;
}
/// Returns the derivative of the spherical function with respect to phi
/// return value is in cartesian coordinates
vec3<T> dphi(T theta, T phi, T d = 0.01) {
T r = p(theta, phi); //calculate the value of the spherical function at three points
//double rt = p(theta + d, phi);
T rp = p(theta, phi + d);
vec3<T> s(r, theta, phi); //get the spherical coordinate position for all three points
//vec3<double> st(rt, theta + d, phi);
vec3<T> sp(rp, theta, phi + d);
vec3<T> c = s.sph2cart();
//vec3<double> ct = st.sph2cart();
vec3<T> cp = sp.sph2cart();
vec3<T> dp = (cp - c) / d; //calculate the derivative
return dp;
}
/// Returns the value of the function at the coordinate (theta, phi)
/// @param theta = [0, 2pi]
/// @param phi = [0, pi]
T operator()(T theta, T phi) {
return p(theta, phi);
}
/// Fill an NxN grid with the spherical function for theta = [0 2pi] and phi = [0 pi]
void get_func(T* data, size_t X, size_t Y) {
T dt = stim::TAU / (T)X; //calculate the step size in each direction
T dp = stim::PI / (T)(Y - 1);
for (size_t ti = 0; ti < X; ti++) {
for (size_t pi = 0; pi < Y; pi++) {
data[pi * X + ti] = (*this)((T)ti * dt, (T)pi * dp);
}
}
}
/// Project a spherical function onto the basis using C coefficients
/// @param data is a pointer to the function values in (theta, phi) coordinates
/// @param N is the number of samples along each axis, where theta = [0 2pi), phi = [0 pi]
void project(T* data, size_t x, size_t y, size_t nc) {
stim::cpu2image(data, "test.ppm", x, y, stim::cmBrewer);
C.resize(nc, 0); //resize the coefficient array to store the necessary coefficients
T dtheta = stim::TAU / (T)(x - 1); //calculate the grid spacing along theta
T dphi = stim::PI / (T)y; //calculate the grid spacing along phi
T theta, phi;
for (size_t c = 0; c < nc; c++) { //for each coefficient
for (size_t theta_i = 0; theta_i < x; theta_i++) { //for each coordinate in the provided array
theta = theta_i * dtheta; //calculate theta
for (size_t phi_i = 0; phi_i < y; phi_i++) {
phi = phi_i * dphi; //calculate phi
C[c] += data[phi_i * x + theta_i] * SH(c, theta, phi) * dtheta * dphi * sin(phi);
}
}
}
}
}; //end class sph_harmonics
}
#endif