bip.h 77.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
#ifndef STIM_BIP_H
#define STIM_BIP_H

#include "../envi/envi_header.h"
#include "../envi/bil.h"
#include "../envi/hsi.h"
#include <cstring>
#include <complex>
#include <utility>

//CUDA
//#ifdef CUDA_FOUND
#include <stim/cuda/cudatools/error.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#include "cufft.h"
//#endif

namespace stim{

/**
	The BIP class represents a 3-dimensional binary file stored using band interleaved by pixel (BIP) image encoding. The binary file is stored
	such that Z-X "frames" are stored sequentially to form an image stack along the y-axis. When accessing the data sequentially on disk,
	the dimensions read, from fastest to slowest, are Z, X, Y.

	This class is optimized for data streaming, and therefore supports extremely large (terabyte-scale) files. Data is loaded from disk
	on request. Functions used to access data are written to support efficient reading.
*/
template <typename T>

class bip: public hsi<T> {

protected:


	//std::vector<double> w; //band wavelength
	unsigned long long offset;		//header offset

	using hsi<T>::w;				//use the wavelength array in stim::hsi
	using hsi<T>::nnz;
	using binary<T>::progress;
	using hsi<T>::X;
	using hsi<T>::Y;
	using hsi<T>::Z;

public:

	using binary<T>::open;
	using binary<T>::file;
	using binary<T>::R;
	using binary<T>::read_line_0;

	bip(){ hsi<T>::init_bip(); }

	/// Open a data file for reading using the class interface.

	/// @param filename is the name of the binary file on disk
	/// @param X is the number of samples along dimension 1
	/// @param Y is the number of samples (lines) along dimension 2
	/// @param B is the number of samples (bands) along dimension 3
	/// @param header_offset is the number of bytes (if any) in the binary header
	/// @param wavelengths is an optional STL vector of size B specifying a numerical label for each band
	bool open(std::string filename,
			  unsigned long long X,
			  unsigned long long Y,
			  unsigned long long B,
			  unsigned long long header_offset,
			  std::vector<double> wavelengths){

		//copy the wavelengths to the BSQ file structure
		w = wavelengths;
		//copy the offset to the structure
		offset = header_offset;

		return open(filename, vec<unsigned long long>(B, X, Y), header_offset);

	}

	/// Retrieve a single band (based on index) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param page <= B is the integer number of the band to be copied.
	bool band_index( T * p, unsigned long long page, bool PROGRESS = false){
		return binary<T>::read_plane_0(p, page, PROGRESS);
	}

	/// Retrieve a single band (by numerical label) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param wavelength is a floating point value (usually a wavelength in spectral data) used as a label for the band to be copied.
	bool band( T * p, double wavelength, bool PROGRESS = false){

		//if there are no wavelengths in the BSQ file
		if(w.size() == 0)
			return band_index(p, (unsigned long long)wavelength, PROGRESS);

		unsigned long long XY = X() * Y();	//calculate the number of pixels in a band

		unsigned page=0;                      //bands around the wavelength


		//get the bands numbers around the wavelength

		//if wavelength is smaller than the first one in header file
		if ( w[page] > wavelength ){
			band_index(p, page, PROGRESS);
			return true;
		}

		while( w[page] < wavelength )
		{
			page++;
			//if wavelength is larger than the last wavelength in header file
			if (page == Z()) {
				band_index(p, Z()-1, PROGRESS);
				return true;
			}
		}
		if ( wavelength < w[page] )
		{
			T * p1;
			T * p2;
			p1=(T*)malloc( XY * sizeof(T));                     //memory allocation
			p2=(T*)malloc( XY * sizeof(T));
			band_index(p1, page - 1);
			band_index(p2, page, PROGRESS);
			for(unsigned long long i=0; i < XY; i++){
				double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
				p[i] = (T)(((double)p2[i] - (double)p1[i]) * r + (double)p1[i]);
			}
			free(p1);
			free(p2);
		}
		else                           //if the wavelength is equal to a wavelength in header file
		{
			band_index(p, page, PROGRESS);
		}
		return true;
	}

	/// Retrieve a single spectrum (Z-axis line) at a given (x, y) location and stores it in pre-allocated memory.

	/// @param p is a pointer to pre-allocated memory at least B * sizeof(T) in size.
	/// @param x is the x-coordinate (dimension 1) of the spectrum.
	/// @param y is the y-coordinate (dimension 2) of the spectrum.
	bool spectrum(T * p, unsigned long long x, unsigned long long y, bool PROGRESS = false){
		return read_line_0(p, x, y, PROGRESS);				//read a line in the binary YZ plane (dimension order for BIP is ZXY)
	}
	bool spectrum(T* p, size_t n, bool PROGRESS = false){
		size_t y = n / X();
		size_t x = n - y * X();
		return read_line_0(p, x, y, PROGRESS);				//read a line in the binary YZ plane (dimension order for BIP is ZXY)
	}

	/// Retrieves a band of x values from a given xz plane.

	/// @param p is a pointer to pre-allocated memory at least X * sizeof(T) in size
	/// @param c is a pointer to an existing XZ plane (size X*Z*sizeof(T))
	/// @param wavelength is the wavelength of X values to retrieve
	bool read_x_from_xz(T* p, T* c, double wavelength)
	{
		unsigned long long B = Z();

		unsigned long long page=0;                      //samples around the wavelength


		//get the bands numbers around the wavelength

		//if wavelength is smaller than the first one in header file
		if ( w[page] > wavelength ){
			for(unsigned long long j = 0; j < X(); j++)
			{
				p[j] = c[j * B];
			}
			return true;
		}

		while( w[page] < wavelength )
		{
			page++;
			//if wavelength is larger than the last wavelength in header file
			if (page == B) {
				for(unsigned long long j = 0; j < X(); j++)
				{
					p[j] = c[(j + 1) * B - 1];
				}
				return true;
			}
		}
		if ( wavelength < w[page] )
		{
			T * p1;
			T * p2;
			p1=(T*)malloc( X() * sizeof(T));                     //memory allocation
			p2=(T*)malloc( X() * sizeof(T));
			//band_index(p1, page - 1);
			for(unsigned long long j = 0; j < X(); j++)
			{
				p1[j] = c[j * B + page - 1];
			}
			//band_index(p2, page );
			for(unsigned long long j = 0; j < X(); j++)
			{
				p2[j] = c[j * B + page];
			}

			for(unsigned long long i=0; i < X(); i++){
				double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
				p[i] = (p2[i] - p1[i]) * r + p1[i];
			}
			free(p1);
			free(p2);
		}
		else                           //if the wavelength is equal to a wavelength in header file
		{
			//band_index(p, page);
			for(unsigned long long j = 0; j < X(); j++)
			{
				p[j] = c[j * B + page];
			}
		}

		return true;
	}

	/// Retrieve a single pixel and store it in a pre-allocated double array.
	bool pixeld(double* p, unsigned long long n){
		unsigned long long bandnum = X() * Y();		//calculate numbers in one band
		if ( n >= bandnum){							//make sure the pixel number is right
			std::cout<<"ERROR: sample or line out of range"<<std::endl;
			return false;
		}
		unsigned long long B = Z();

		T* temp = (T*) malloc(B * sizeof(T));						//allocate space for the raw pixel data
		file.seekg(n * B * sizeof(T), std::ios::beg);				//point to the certain pixel
		file.read((char *)temp, sizeof(T) * B);					//read the spectrum from disk to the temp pointer

		for(unsigned long long i = 0; i < B; i++)						//for each element of the spectrum
			p[i] = (double) temp[i];							//cast each element to a double value
		free(temp);												//free temporary memory
		return true;
	}

	/// Retrieve a single pixel and stores it in pre-allocated memory.

	/// @param p is a pointer to pre-allocated memory at least sizeof(T) in size.
	/// @param n is an integer index to the pixel using linear array indexing.
	bool pixel(T * p, unsigned long long n){

		unsigned long long N = X() * Y();					//calculate numbers in one band
		if ( n >= N){							//make sure the pixel number is right
			std::cout<<"ERROR: sample or line out of range"<<std::endl;
			return false;
		}

		file.seekg(n * Z() * sizeof(T), std::ios::beg);           //point to the certain pixel
		file.read((char *)p, sizeof(T) * Z());
		return true;
	}

	//given a Y ,return a ZX slice
	bool read_plane_y(T * p, size_t y){
		return binary<T>::read_plane_2(p, y);
	}

	/// Perform baseline correction given a list of baseline points and stores the result in a new BSQ file.

	/// @param outname is the name of the output file used to store the resulting baseline-corrected data.
	/// @param wls is the list of baseline points based on band labels.
	bool baseline(std::string outname, std::vector<double> base_pts, unsigned char* mask = NULL, bool PROGRESS = false){

		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file

		unsigned long long N = X() * Y();						//calculate the total number of pixels to be processed
		unsigned long long B = Z();								//get the number of bands
		T* s = (T*)malloc(sizeof(T) * B);						//allocate memory to store a pixel
		T* sbc = (T*)malloc(sizeof(T) * B);						//allocate memory to store the baseline corrected spectrum

		std::vector<T> base_vals;								//allocate space for the values at each baseline point
		double aw, bw;											//surrounding baseline point wavelengths
		T av, bv;												//surrounding baseline point values
		unsigned long long ai, bi;								//surrounding baseline point band indices
		for(unsigned long long n = 0; n < N; n++){				//for each pixel in the image
			if(mask != NULL && !mask[n]){						//if the pixel isn't masked
				memset(sbc, 0, sizeof(T) * B);					//set the baseline corrected spectrum to zero
			}
			else{

				pixel(s, n);										//retrieve the spectrum s
				base_vals = hsi<T>::interp_spectrum(s, base_pts);			//get the values at each baseline point

				ai = bi = 0;
				aw = w[0];											//initialize the current baseline points (assume the spectrum starts at 0)
				av = s[0];
				bw = base_pts[0];
				for(unsigned long long b = 0; b < B; b++){			//for each band in the spectrum
					while(bi < base_pts.size() && base_pts[bi] < w[b])	//while the current wavelength is higher than the second baseline point
						bi++;											//move to the next baseline point
					if(bi < base_pts.size()){
						bw = base_pts[bi];							//set the wavelength for the upper bound baseline point
						bv = base_vals[bi];							//set the value for the upper bound baseline point
					}
					if(bi == base_pts.size()){						//if we have passed the last baseline point
						bw = w[B-1];								//set the outer bound to the last spectral band
						bv = s[B-1];
					}
					if(bi != 0){
						ai = bi - 1;								//set the lower bound baseline point index
						aw = base_pts[ai];							//set the wavelength for the lower bound baseline point
						av = base_vals[ai];							//set the value for the lower bound baseline point
					}
					sbc[b] = s[b] - hsi<T>::lerp(w[b], av, aw, bv, bw);		//perform the baseline correction and save the new value
				}
			}

			if(PROGRESS) progress = (double)(n+1) / N * 100;	//set the current progress

			target.write((char*)sbc, sizeof(T) * B);	//write the corrected data into destination
		}														//end for each pixel

		free(s);
		free(sbc);
		target.close();

		return true;

	}

	/// Normalize all spectra based on the value of a single band, storing the result in a new BSQ file.

	/// @param outname is the name of the output file used to store the resulting baseline-corrected data.
	///	@param w is the label specifying the band that the hyperspectral image will be normalized to.
	///	@param t is a threshold specified such that a spectrum with a value at w less than t is set to zero. Setting this threshold allows the user to limit division by extremely small numbers.
	bool ratio(std::string outname, double w, unsigned char* mask = NULL, bool PROGRESS = false)
	{
		std::ofstream target(outname.c_str(), std::ios::binary);	//open the target binary file
		std::string headername = outname + ".hdr";              //the header file name

		unsigned long long N = X() * Y();						//calculate the total number of pixels to be processed
		unsigned long long B = Z();								//get the number of bands
		T* s = (T*)malloc(sizeof(T) * B);						//allocate memory to store a pixel
		T nv;													//stores the value of the normalized band
		for(unsigned long long n = 0; n < N; n++){				//for each pixel in the image
			if(mask != NULL && !mask[n])						//if the normalization band is below threshold
				memset(s, 0, sizeof(T) * B);					//set the output to zero
			else{
				pixel(s, n);										//retrieve the spectrum s
				nv = hsi<T>::interp_spectrum(s, w);							//find the value of the normalization band

				for(unsigned long long b = 0; b < B; b++)			//for each band in the spectrum
					s[b] /= nv;										//divide by the normalization value
			}

			if(PROGRESS) progress = (double)(n+1) / N * 100;	//set the current progress

			target.write((char*)s, sizeof(T) * B);	//write the corrected data into destination
		}														//end for each pixel

		free(s);
		target.close();
		return true;
	}

	void normalize(std::string outfile, unsigned char* mask = NULL, bool PROGRESS = false){

		std::ofstream target(outfile.c_str(), std::ios::binary);	//open the target binary file
		file.seekg(0, std::ios::beg);								//move the pointer to the current file to the beginning

		size_t B = Z();												//number of spectral components
		size_t XY = X() * Y();										//calculate the number of pixels
		size_t Bb = B * sizeof(T);									//number of bytes in a spectrum

		T* spec = (T*) malloc(Bb);									//allocate space for the spectrum
		T len;
		for(size_t xy = 0; xy < XY; xy++){							//for each pixel
			memset(spec, 0, Bb);									//set the spectrum to zero
			if(mask == NULL || mask[xy]){							//if the pixel is masked
				len = 0;											//initialize the
				file.read((char*)spec, Bb);							//read a spectrum
				for(size_t b = 0; b < B; b++)						//for each band
					len += spec[b]*spec[b];							//add the square of the spectral band
				len = sqrt(len);									//calculate the square of the sum of squared components
				for(size_t b = 0; b < B; b++)						//for each band
					spec[b] /= len;									//divide by the length
			}
			else
				file.seekg(Bb, std::ios::cur);						//otherwise skip a spectrum
			target.write((char*)spec, Bb);							//output the normalized spectrum
			if(PROGRESS) progress = (double)(xy + 1) / (double)XY * 100;		//update the progress
		}
	}


	/// Convert the current BIP file to a BIL file with the specified file name.

	/// @param outname is the name of the output BIL file to be saved to disk.
	bool bil(std::string outname, bool PROGRESS = false)
	{
		unsigned long long S = X() * Z() * sizeof(T);		//calculate the number of bytes in a ZX slice

		std::ofstream target(outname.c_str(), std::ios::binary);
		//std::string headername = outname + ".hdr";

		T * p;			//pointer to the current ZX slice for bip file
		p = (T*)malloc(S);
		T * q;			//pointer to the current XZ slice for bil file
		q = (T*)malloc(S);

		for ( unsigned long long i = 0; i < Y(); i++)
		{
			read_plane_y(p, i);
			for ( unsigned long long k = 0; k < Z(); k++)
			{
				unsigned long long ks = k * X();
				for ( unsigned long long j = 0; j < X(); j++)
					q[ks + j] = p[k + j * Z()];

				if(PROGRESS) progress = (double)(i * Z() + k+1) / (Y() * Z()) * 100;
			}
			target.write(reinterpret_cast<const char*>(q), S);   //write a band data into target file
		}

		free(p);
		free(q);
		target.close();
		return true;
	}

	/// Return a baseline corrected band given two adjacent baseline points and their bands. The result is stored in a pre-allocated array.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lp is a pointer to an array holding the band image for the left baseline point
	/// @param rp is a pointer to an array holding the band image for the right baseline point
	/// @param wavelength is the label value for the requested baseline-corrected band
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size.
	bool baseline_band(double lb, double rb, T* lp, T* rp, double wavelength, T* result){

		unsigned long long XY = X() * Y();
		band(result, wavelength);		//get band

		//perform the baseline correction
		double r = (double) (wavelength - lb) / (double) (rb - lb);
		for(unsigned long long i=0; i < XY; i++){
			result[i] =(T) (result[i] - (rp[i] - lp[i]) * r - lp[i] );
		}
		return true;
	}

	/// Return a baseline corrected band given two adjacent baseline points. The result is stored in a pre-allocated array.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param bandwavelength is the label value for the desired baseline-corrected band
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size.
	bool height(double lb, double rb, double bandwavelength, T* result){

		T* lp;
		T* rp;
		unsigned long long XY = X() * Y();
		unsigned long long S = XY * sizeof(T);
		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);

		band(lp, lb);
		band(rp, rb);

		baseline_band(lb, rb, lp, rp, bandwavelength, result);

		free(lp);
		free(rp);
		return true;
	}


	/// Calculate the area under the spectrum between two specified points and stores the result in a pre-allocated array.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label value for the left bound (start of the integration)
	/// @param rab is the label value for the right bound (end of the integration)
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool area(double lb, double rb, double lab, double rab, T* result){

		T* lp;	//left band pointer
		T* rp;	//right band pointer
		T* cur;		//current band 1
		T* cur2;	//current band 2

		unsigned long long XY = X() * Y();
		unsigned long long S = XY * sizeof(T);

		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);
		cur = (T*) malloc(S);
		cur2 = (T*) malloc(S);

		memset(result, (char)0, S);

		//find the wavelenght position in the whole band
		unsigned long long n = w.size();
		unsigned long long ai = 0;		//left bound position
		unsigned long long bi = n - 1;		//right bound position



		//to make sure the left and the right bound are in the bandwidth
		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
			std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
			exit(1);
		}
		//to make sure rigth bound is bigger than left bound
		else if(lb > rb){
			std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
			exit(1);
		}

		//get the position of lb and rb
		while (lab >= w[ai]){
			ai++;
		}
		while (rab <= w[bi]){
			bi--;
		}

		band(lp, lb);
		band(rp, rb);

		//calculate the beginning and the ending part
		baseline_band(lb, rb, lp, rp, rab, cur2);		//ending part
		baseline_band(lb, rb, lp, rp, w[bi], cur);
		for(unsigned long long j = 0; j < XY; j++){
			result[j] += (T)((rab - w[bi]) * ((double)cur[j] + (double)cur2[j]) / 2.0);
		}
		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
		baseline_band(lb, rb, lp, rp, w[ai], cur);
		for(unsigned long long j = 0; j < XY; j++){
			result[j] += (T)((w[ai] - lab) * ((double)cur[j] + (double)cur2[j]) / 2.0);
		}

		//calculate the area
		ai++;
		for(unsigned long long i = ai; i <= bi ;i++)
		{
			baseline_band(lb, rb, lp, rp, w[ai], cur2);
			for(unsigned long long j = 0; j < XY; j++)
			{
				result[j] += (T)((w[ai] - w[ai-1]) * ((double)cur[j] + (double)cur2[j]) / 2.0);
			}
			std::swap(cur,cur2);		//swap the band pointers
		}

		free(lp);
		free(rp);
		free(cur);
		free(cur2);
		return true;
	}

	/// Compute the ratio of two baseline-corrected peaks. The result is stored in a pre-allocated array.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool ph_to_ph(T* result, double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, unsigned char* mask = NULL){

		T* p1 = (T*)malloc(X() * Y() * sizeof(T));
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));

		//get the two peak band
		height(lb1, rb1, pos1, p1);
		height(lb2, rb2, pos2, p2);
		//calculate the ratio in result
		for(unsigned long long i = 0; i < X() * Y(); i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;
	}

	/// Compute the ratio between a peak area and peak height.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_ph(T* result, double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double pos, unsigned char* mask = NULL){

		T* p1 = (T*)malloc(X() * Y() * sizeof(T));
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));

		//get the area and the peak band
		area(lb1, rb1, lab1, rab1, p1);
		height(lb2, rb2, pos, p2);
		//calculate the ratio in result
		for(unsigned long long i = 0; i < X() * Y(); i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;
	}

	/// Compute the ratio between two peak areas.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param lab1 is the label value for the left bound (start of the integration) of the first peak (numerator)
	/// @param rab1 is the label value for the right bound (end of the integration) of the first peak (numerator)
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param lab2 is the label value for the left bound (start of the integration) of the second peak (denominator)
	/// @param rab2 is the label value for the right bound (end of the integration) of the second peak (denominator)
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_pa(T* result, double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double lab2, double rab2, unsigned char* mask = NULL){

		T* p1 = (T*)malloc(X() * Y() * sizeof(T));
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));

		//get the area and the peak band
		area(lb1, rb1, lab1, rab1, p1);
		area(lb2, rb2, lab2, rab2, p2);
		//calculate the ratio in result
		for(unsigned long long i = 0; i < X() * Y(); i++){
			if(p1[i] == 0 && p2[i] ==0)
				result[i] = 1;
			else
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;
	}

	/// Compute the definite integral of a baseline corrected peak.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label for the start of the definite integral
	/// @param rab is the label for the end of the definite integral
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool x_area(double lb, double rb, double lab, double rab, T* result){
		T* lp;	//left band pointer
		T* rp;	//right band pointer
		T* cur;		//current band 1
		T* cur2;	//current band 2

		unsigned long long XY = X() * Y();
		unsigned long long S = XY * sizeof(T);

		lp = (T*) malloc(S);			//memory allocation
		rp = (T*) malloc(S);
		cur = (T*) malloc(S);
		cur2 = (T*) malloc(S);

		memset(result, (char)0, S);

		//find the wavelenght position in the whole band
		unsigned long long n = w.size();
		unsigned long long ai = 0;		//left bound position
		unsigned long long bi = n - 1;		//right bound position

		//to make sure the left and the right bound are in the bandwidth
		if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
			std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
			exit(1);
		}
		//to make sure rigth bound is bigger than left bound
		else if(lb > rb){
			std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
			exit(1);
		}

		//get the position of lb and rb
		while (lab >= w[ai]){
			ai++;
		}
		while (rab <= w[bi]){
			bi--;
		}

		band(lp, lb);
		band(rp, rb);

		//calculate the beginning and the ending part
		baseline_band(lb, rb, lp, rp, rab, cur2);		//ending part
		baseline_band(lb, rb, lp, rp, w[bi], cur);
		for(unsigned long long j = 0; j < XY; j++){
			result[j] += (T)((rab - w[bi]) * (rab + w[bi]) * ((double)cur[j] + (double)cur2[j]) / 4.0);
		}
		baseline_band(lb, rb, lp, rp, lab, cur2);		//beginnning part
		baseline_band(lb, rb, lp, rp, w[ai], cur);
		for(unsigned long long j = 0; j < XY; j++){
			result[j] += (T)((w[ai] - lab) * (w[ai] + lab) * ((double)cur[j] + (double)cur2[j]) / 4.0);
		}

		//calculate f(x) times x
		ai++;
		for(unsigned long long i = ai; i <= bi ;i++)
		{
			baseline_band(lb, rb, lp, rp, w[ai], cur2);
			for(unsigned long long j = 0; j < XY; j++)
			{
				result[j] += (T)((w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * ((double)cur[j] + (double)cur2[j]) / 4.0);
			}
			std::swap(cur,cur2);		//swap the band pointers
		}

		free(lp);
		free(rp);
		free(cur);
		free(cur2);
		return true;
	}

	/// Compute the centroid of a baseline corrected peak.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label for the start of the peak
	/// @param rab is the label for the end of the peak
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool centroid(T* result, double lb, double rb, double lab, double rab, unsigned char* mask = NULL){
		T* p1 = (T*)malloc(X() * Y() * sizeof(T));
		T* p2 = (T*)malloc(X() * Y() * sizeof(T));

		//get the area and the peak band
		x_area(lb, rb, lab, rab, p1);
		area(lb, rb, lab, rab, p2);
		//calculate the ratio in result
		for(unsigned long long i = 0; i < X() * Y(); i++){
			if(mask == NULL || mask[i])
				result[i] = p1[i] / p2[i];
		}

		free(p1);
		free(p2);
		return true;
	}

	/// Create a mask based on a given band and threshold value.

	/// All pixels in the
	/// specified band greater than the threshold are true and all pixels less than the threshold are false.
	/// @param mask_band is the band used to specify the mask
	/// @param threshold is the threshold used to determine if the mask value is true or false
	/// @param p is a pointer to a pre-allocated array at least X * Y in size
	bool build_mask(unsigned char* out_mask, double mask_band, double lower, double upper, unsigned char* mask = NULL, bool PROGRESS = false){

		T* temp = (T*)malloc(X() * Y() * sizeof(T));		//allocate memory for the certain band
		band(temp, mask_band, PROGRESS);

		for (unsigned long long i = 0; i < X() * Y();i++) {
			if(mask == NULL || mask[i] != 0){
				if(temp[i] > lower && temp[i] < upper){
					out_mask[i] = 255;
				}
				else
					out_mask[i] = 0;
			}
		}

		free(temp);
		return true;

	}

	/// Apply a mask file to the BSQ image, setting all values outside the mask to zero.

	/// @param outfile is the name of the masked output file
	/// @param p is a pointer to memory of size X * Y, where p(i) = 0 for pixels that will be set to zero.
	bool apply_mask(std::string outfile, unsigned char* p, bool PROGRESS = false){

		std::ofstream target(outfile.c_str(), std::ios::binary);

		unsigned long long ZX = Z() * X();		//calculate the number of values in a page (XZ in BIP)
		unsigned long long L = ZX * sizeof(T);	//calculate the number of bytes in a page

		T * temp = (T*)malloc(L);		//allocate space for that page

		for (unsigned long long i = 0; i < Y(); i++)			//for each page (Y in BIP)
		{
			read_plane_y(temp, i);							//load that page (it's pointed to by temp)
			for ( unsigned long long j = 0; j < X(); j++)	//for each X value
			{
				for (unsigned long long k = 0; k < Z(); k++)	//for each B value (band)
				{
					if (p[i * X() + j] == 0)	//if the mask value is zero
					temp[j * Z() + k] = 0;			//set the pixel value to zero
				else								//otherwise just continue
					continue;
				}
			}
			target.write(reinterpret_cast<const char*>(temp), L);   //write the edited band data into target file
			if(PROGRESS) progress = (double)(i+1) / (double)Y() * 100;
		}
		target.close();						//close the target file
		free(temp);							//free allocated memory
		return true;						//return true
	}

	/// Copies all spectra corresponding to nonzero values of a mask into a pre-allocated matrix of size (B x P)
	///		where P is the number of masked pixels and B is the number of bands. The allocated memory can be accessed
	///		using the following indexing: i = p*B + b
	/// @param matrix is the destination for the pixel data
	/// @param mask is the mask
	bool sift(T* matrix, unsigned char* mask = NULL, bool PROGRESS = false){
		size_t Bbytes = sizeof(T) * Z();
		size_t XY = X() * Y();
		T* band = (T*) malloc( Bbytes );					//allocate space for a line

		file.seekg(0, std::ios::beg);	//seek to the beginning of the file

		size_t p = 0;										//create counter variables
		for(size_t xy = 0; xy < XY; xy++){					//for each pixel
			if(mask == NULL || mask[xy]){									//if the current pixel is masked
				file.read( (char*)band, Bbytes );			//read the current line
				for(size_t b = 0; b < Z(); b++){			//copy each band value to the sifted matrix
					size_t i = p * Z() + b;					//calculate the index in the sifted matrix
					matrix[i] = band[b];					//store the current value in the line at the correct matrix location
				}
				p++;									//increment the pixel pointer
			}
			else
				file.seekg(Bbytes, std::ios::cur);			//otherwise skip this band
			if(PROGRESS) progress = (double)(xy+1) / (double)XY * 100;
		}
		return true;
	}

	/// Saves to disk only those spectra corresponding to mask values != 0
	bool sift(std::string outfile, unsigned char* mask, bool PROGRESS = false){

		//reset the file pointer to the beginning of the file
		file.seekg(0, std::ios::beg);

		// open an output stream
		std::ofstream target(outfile.c_str(), std::ios::binary);

		//allocate space for a single spectrum
		unsigned long long B = Z();
		T* spectrum = (T*) malloc(B * sizeof(T));

		//calculate the number of pixels in a band
		unsigned long long XY = X() * Y();

		//for each pixel
		unsigned long long skip = 0;					//number of spectra to skip
		for(unsigned long long x = 0; x < XY; x++){

			//if the current pixel isn't masked
			if( mask[x] == 0){
				//increment the number of skipped pixels
				skip++;
			}
			//if the current pixel is masked
			else{

				//skip the intermediate pixels
				file.seekg(skip * B * sizeof(T), std::ios::cur);

				//set the skip value to zero
				skip = 0;

				//read this pixel into memory
				file.read((char *)spectrum, B * sizeof(T));

				//write this pixel out
				target.write((char *)spectrum, B * sizeof(T));
			}
			if(PROGRESS) progress = (double) (x+1) / XY * 100;

		}

		//close the output file
		target.close();
		free(spectrum);

		return true;
	}

	bool unsift(std::string outfile, unsigned char* mask, unsigned long long samples, unsigned long long lines, bool PROGRESS = false){

		// open an output stream
		std::ofstream target(outfile.c_str(), std::ios::binary);

		//reset the file pointer to the beginning of the file
		file.seekg(0, std::ios::beg);

		//allocate space for a single spectrum
		unsigned long long B = Z();
		T* spectrum = (T*) malloc(B * sizeof(T));

		//allocate space for a spectrum of zeros
		T* zeros = (T*) malloc(B * sizeof(T));
		memset(zeros, 0, B * sizeof(T));

		//calculate the number of pixels in a band
		unsigned long long XY = samples * lines;

		//for each pixel
		unsigned long long skip = 0;					//number of spectra to skip
		for(unsigned long long x = 0; x < XY; x++){

			//if the current pixel isn't masked
			if( mask[x] == 0){

				//write a bunch of zeros
				target.write((char *)zeros, B * sizeof(T));
			}
			//if the current pixel is masked
			else{

				//read a pixel into memory
				file.read((char *)spectrum, B * sizeof(T));

				//write this pixel out
				target.write((char *)spectrum, B * sizeof(T));
			}

			if(PROGRESS) progress = (double)(x + 1) / XY * 100;

		}

		//close the output file
		target.close();
		free(spectrum);

		//progress = 100;

		return true;


	}

	/// Calculate the mean value for all masked (or valid) pixels in a band and returns the average spectrum

	/// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool mean_spectrum(double* m, double* std = NULL, unsigned char* mask = NULL, bool PROGRESS = false){
		unsigned long long XY = X() * Y();							//calculate the total number of pixels in the HSI
		T* temp = (T*)malloc(sizeof(T) * Z());						//allocate space for the current spectrum to be read
		memset(m, 0, Z() * sizeof(double));							//set the mean spectrum to zero
		double* e_x2 = (double*)malloc(Z() * sizeof(double));		//allocate space for E[x^2]
		memset(e_x2, 0, Z() * sizeof(double));						//set all values for E[x^2] to zero

		unsigned long long count = nnz(mask);									//calculate the number of masked pixels
		double x;
		for (unsigned long long i = 0; i < XY; i++){							//for each pixel in the HSI
			if (mask == NULL || mask[i] != 0){						//if the pixel is masked
				pixel(temp, i);										//get the spectrum
				for (unsigned long long j = 0; j < Z(); j++){					//for each spectral component
					x = temp[j];
					m[j] += x / (double)count;		//add the weighted value to the average
					e_x2[j] += x*x / (double)count;
				}
			}
			if(PROGRESS) progress = (double)(i+1) / XY * 100;		//increment the progress
		}

		//calculate the standard deviation
		if (std != NULL) {
			for (size_t i = 0; i < Z(); i++)
				std[i] = sqrt(e_x2[i] - m[i] * m[i]);
		}

		free(temp);
		return true;
	}
//#ifdef CUDA_FOUND
	/// Calculate the covariance matrix for masked pixels using cuBLAS
	/// Note that cuBLAS only supports integer-sized arrays, so there may be issues with large spectra
	int co_matrix_cublas(double* co, double* avg, unsigned char *mask, bool PROGRESS = false){

		cudaError_t cudaStat;
		cublasStatus_t stat;
		cublasHandle_t handle;

		unsigned long long XY = X() * Y();									//calculate the number of elements in a band image
		unsigned long long B = Z();											//calculate the number of spectral elements

		double* s = (double*)malloc(sizeof(double) * B);					//allocate space for the spectrum that will be pulled from the file
		double* s_dev;														//declare a device pointer that will store the spectrum on the GPU
		double* A_dev;														//declare a device pointer that will store the covariance matrix on the GPU
		double* avg_dev;													//declare a device pointer that will store the average spectrum
		cudaStat = cudaMalloc(&s_dev, B * sizeof(double));					//allocate space on the CUDA device for the spectrum
		cudaStat = cudaMalloc(&A_dev, B * B * sizeof(double));				//allocate space on the CUDA device for the covariance matrix
		cudaStat = cudaMemset(A_dev, 0, B * B * sizeof(double));			//initialize the covariance matrix to zero (0)
		cudaStat = cudaMalloc(&avg_dev, B * sizeof(double));				//allocate space on the CUDA device for the average spectrum
		stat = cublasSetVector((int)B, sizeof(double), avg, 1, avg_dev, 1);		//copy the average spectrum to the CUDA device

		double ger_alpha = 1.0/(double)XY;									//scale the outer product by the inverse of the number of samples (mean outer product)
		double axpy_alpha = -1;												//multiplication factor for the average spectrum (in order to perform a subtraction)

		stat = cublasCreate(&handle);										//create a cuBLAS instance
		if (stat != CUBLAS_STATUS_SUCCESS) return 1;						//test the cuBLAS instance to make sure it is valid

		//else std::cout<<"Using cuBLAS to calculate the mean covariance matrix..."<<std::endl;
		for (unsigned long long xy = 0; xy < XY; xy++){										//for each pixel
			if (mask == NULL || mask[xy] != 0){
				pixeld(s, xy);																	//retreive the spectrum at the current xy pixel location
				stat = cublasSetVector((int)B, sizeof(double), s, 1, s_dev, 1);						//copy the spectrum from the host to the device
				stat = cublasDaxpy(handle, (int)B, &axpy_alpha, avg_dev, 1, s_dev, 1);				//subtract the average spectrum
				stat = cublasDsyr(handle, CUBLAS_FILL_MODE_UPPER, (int)B, &ger_alpha, s_dev, 1, A_dev, (int)B);	//calculate the covariance matrix (symmetric outer product)
			}
			if(PROGRESS) progress = (double)(xy+1) / XY * 100;													//record the current progress

		}

		cublasGetMatrix((int)B, (int)B, sizeof(double), A_dev, (int)B, co, (int)B);					//copy the result from the GPU to the CPU

		cudaFree(A_dev);														//clean up allocated device memory
		cudaFree(s_dev);
		cudaFree(avg_dev);

		for(unsigned long long i = 0; i < B; i++){										//copy the upper triangular portion to the lower triangular portion
			for(unsigned long long j = i+1; j < B; j++){
				co[B * i + j] = co[B * j + i];
			}
		}

		return 0;
	}
//#endif

	/// Calculate the covariance matrix for all masked pixels in the image with 64-bit floating point precision.

	/// @param co is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix
	/// @param avg is a pointer to memory of size B that stores the average spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool co_matrix(double* co, double* avg, unsigned char *mask, int cuda_device = 0, bool PROGRESS = false){
		progress = 0;

		if(cuda_device >= 0){													//if a CUDA device is specified
			int dev_count;
			HANDLE_ERROR(cudaGetDeviceCount(&dev_count));						//get the number of CUDA devices
			if(dev_count > 0 && dev_count > cuda_device){							//if the first device is not an emulator
				cudaDeviceProp prop;
				cudaGetDeviceProperties(&prop, cuda_device);									//get the property of the requested CUDA device
				if (prop.major != 9999) {
					std::cout << "Using CUDA device [" << cuda_device << "] to calculate the mean covariance matrix..."<<std::endl;
					HANDLE_ERROR(cudaSetDevice(cuda_device));
					int status = co_matrix_cublas(co, avg, mask, PROGRESS);			//use cuBLAS to calculate the covariance matrix
					if (status == 0) return true;									//if the cuBLAS function returned correctly, we're done
				}
			}																	//otherwise continue using the CPU		
			std::cout<<"WARNING: cuBLAS failed, using CPU"<<std::endl;
		}
		//memory allocation
		unsigned long long XY = X() * Y();
		unsigned long long B = Z();
		T* temp = (T*)malloc(sizeof(T) * B);

		unsigned long long count = nnz(mask);								//count the number of masked pixels

		//initialize covariance matrix
		memset(co, 0, B * B * sizeof(double));

		//calculate covariance matrix
		double* co_half = (double*) malloc(B * B * sizeof(double));			//allocate space for a higher-precision intermediate matrix
		double* temp_precise = (double*) malloc(B * sizeof(double));
		memset(co_half, 0, B * B * sizeof(double));							//initialize the high-precision matrix with zeros
		unsigned long long idx;													//stores i*B to speed indexing
		for (unsigned long long xy = 0; xy < XY; xy++){
			if (mask == NULL || mask[xy] != 0){
				pixel(temp, xy);												//retreive the spectrum at the current xy pixel location
				for(unsigned long long b = 0; b < B; b++)									//subtract the mean from this spectrum and increase the precision
					temp_precise[b] = (double)temp[b] - (double)avg[b];
				idx = 0;
				for (unsigned long long b0 = 0; b0 < B; b0++){								//for each band
					for (unsigned long long b1 = b0; b1 < B; b1++)
						co_half[idx++] += temp_precise[b0] * temp_precise[b1];
				}
			}
			if(PROGRESS) progress = (double)(xy+1) / XY * 100;
		}
		idx = 0;
		for (unsigned long long i = 0; i < B; i++){										//copy the precision matrix to both halves of the output matrix
			for (unsigned long long j = i; j < B; j++){
				co[j * B + i] = co[i * B + j] = co_half[idx++] / (double) count;
			}
		}

		free(temp);
		free(temp_precise);
		return true;
	}


//#ifdef CUDA_FOUND
	/// Calculate the covariance matrix of Noise for masked pixels using cuBLAS
	/// Note that cuBLAS only supports integer-sized arrays, so there may be issues with large spectra
	int coNoise_matrix_cublas(double* coN, double* avg, unsigned char *mask, bool PROGRESS = false){

		cudaError_t cudaStat;
		cublasStatus_t stat;
		cublasHandle_t handle;

		progress = 0;													    //initialize the progress to zero (0)
		unsigned long long XY = X() * Y();									//calculate the number of elements in a band image
		unsigned long long B = Z();											//calculate the number of spectral elements

		double* s = (double*)malloc(sizeof(double) * B);					//allocate space for the spectrum that will be pulled from the file
		double* s_dev;														//declare a device pointer that will store the spectrum on the GPU

        double* s2_dev;														//  device pointer on the GPU
        cudaStat = cudaMalloc(&s2_dev, B * sizeof(double));					//  allocate space on the CUDA device
        cudaStat = cudaMemset(s2_dev, 0, B * sizeof(double));               //  initialize s2_dev to zero (0)

		double* A_dev;														//declare a device pointer that will store the covariance matrix on the GPU
		double* avg_dev;													//declare a device pointer that will store the average spectrum
		cudaStat = cudaMalloc(&s_dev, B * sizeof(double));					//allocate space on the CUDA device for the spectrum
		cudaStat = cudaMalloc(&A_dev, B * B * sizeof(double));				//allocate space on the CUDA device for the covariance matrix
		cudaStat = cudaMemset(A_dev, 0, B * B * sizeof(double));			//initialize the covariance matrix to zero (0)
		cudaStat = cudaMalloc(&avg_dev, B * sizeof(double));				//allocate space on the CUDA device for the average spectrum
		stat = cublasSetVector((int)B, sizeof(double), avg, 1, avg_dev, 1);		//copy the average spectrum to the CUDA device

		double ger_alpha = 1.0/(double)XY;									//scale the outer product by the inverse of the number of samples (mean outer product)
		double axpy_alpha = -1;												//multiplication factor for the average spectrum (in order to perform a subtraction)

		CUBLAS_HANDLE_ERROR(cublasCreate(&handle));							//create a cuBLAS instance
		if (stat != CUBLAS_STATUS_SUCCESS) return 1;						//test the cuBLAS instance to make sure it is valid

		for (unsigned long long xy = 0; xy < XY; xy++){										//for each pixel
			if (mask == NULL || mask[xy] != 0){
				pixeld(s, xy);                                                             //retreive the spectrum at the current xy pixel location

				stat = cublasSetVector((int)B, sizeof(double), s, 1, s_dev, 1);						//copy the spectrum from the host to the device
				stat = cublasDaxpy(handle, (int)B, &axpy_alpha, avg_dev, 1, s_dev, 1);				//subtract the average spectrum

                cudaMemcpy(s2_dev, s_dev + 1 , (B-1) * sizeof(double), cudaMemcpyDeviceToDevice);    //copy B-1 elements from shifted source data (s_dev) to device pointer (s2_dev )
                stat = cublasDaxpy(handle, (int)B, &axpy_alpha, s2_dev, 1, s_dev, 1);	   //Minimum/Maximum Autocorrelation Factors (MAF) method : subtranct each pixel from adjacent pixel (z direction is choosed to do so , which is almost the same as x or y direction or even average of them )


				stat = cublasDsyr(handle, CUBLAS_FILL_MODE_UPPER, (int)B, &ger_alpha, s_dev, 1, A_dev, (int)B);	//calculate the covariance matrix (symmetric outer product)
			}
			if(PROGRESS) progress = (double)(xy+1) / XY * 100;													//record the current progress

		}

		cublasGetMatrix((int)B, (int)B, sizeof(double), A_dev, (int)B, coN, (int)B);					//copy the result from the GPU to the CPU

		cudaFree(A_dev);														//clean up allocated device memory
		cudaFree(s_dev);
		cudaFree(s2_dev);
		cudaFree(avg_dev);

		for(unsigned long long i = 0; i < B; i++){										//copy the upper triangular portion to the lower triangular portion
			for(unsigned long long j = i+1; j < B; j++){
				coN[B * i + j] = coN[B * j + i];
			}
		}

		return 0;
	}
//#endif

	/// Calculate the covariance of noise matrix for all masked pixels in the image with 64-bit floating point precision.

	/// @param coN is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix
	/// @param avg is a pointer to memory of size B that stores the average spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool coNoise_matrix(double* coN, double* avg, unsigned char *mask, int cuda_device = 0, bool PROGRESS = false){

		if (cuda_device >= 0) {													//if a CUDA device is specified
			int dev_count;
			HANDLE_ERROR(cudaGetDeviceCount(&dev_count));						//get the number of CUDA devices
			if (dev_count > 0 && dev_count > cuda_device) {							//if the first device is not an emulator
				cudaDeviceProp prop;
				cudaGetDeviceProperties(&prop, cuda_device);									//get the property of the requested CUDA device
				if (prop.major != 9999) {
					std::cout << "Using CUDA device [" << cuda_device << "] to calculate the noise covariance matrix..." << std::endl;
					HANDLE_ERROR(cudaSetDevice(cuda_device));
					int status = coNoise_matrix_cublas(coN, avg, mask, PROGRESS);			//use cuBLAS to calculate the covariance matrix
					if (status == 0) return true;									//if the cuBLAS function returned correctly, we're done
				}
			}																	//otherwise continue using the CPU		
			std::cout << "WARNING: cuBLAS failed, using CPU" << std::endl;
		}

		progress = 0;
		//memory allocation
		unsigned long long XY = X() * Y();
		unsigned long long B = Z();
		T* temp = (T*)malloc(sizeof(T) * B);

		unsigned long long count = nnz(mask);								//count the number of masked pixels

		//initialize covariance matrix of noise
		memset(coN, 0, B * B * sizeof(double));

		//calculate covariance matrix
		double* coN_half = (double*) malloc(B * B * sizeof(double));			//allocate space for a higher-precision intermediate matrix
		double* temp_precise = (double*) malloc(B * sizeof(double));
		memset(coN_half, 0, B * B * sizeof(double));							//initialize the high-precision matrix with zeros
		unsigned long long idx;													//stores i*B to speed indexing
		for (unsigned long long xy = 0; xy < XY; xy++){
			if (mask == NULL || mask[xy] != 0){
				pixel(temp, xy);												//retreive the spectrum at the current xy pixel location
				for(unsigned long long b = 0; b < B; b++)									//subtract the mean from this spectrum and increase the precision
					temp_precise[b] = (double)temp[b] - (double)avg[b];

                for(unsigned long long b2 = 0; b2 < B-1; b2++)	    //Minimum/Maximum Autocorrelation Factors (MAF) method : subtranct each pixel from adjacent pixel (z direction is choosed to do so , which is almost the same as x or y direction or even average of them )
					temp_precise[b2] -=  temp_precise[b2+1];

				idx = 0;
				for (unsigned long long b0 = 0; b0 < B; b0++){								//for each band
					for (unsigned long long b1 = b0; b1 < B; b1++)
						coN_half[idx++] += temp_precise[b0] * temp_precise[b1];
				}
			}
			if(PROGRESS) progress = (double)(xy+1) / XY * 100;
		}
		idx = 0;
		for (unsigned long long i = 0; i < B; i++){										//copy the precision matrix to both halves of the output matrix
			for (unsigned long long j = i; j < B; j++){
				coN[j * B + i] = coN[i * B + j] = coN_half[idx++] / (double) count;
			}
		}

		free(temp);
		free(temp_precise);
		return true;
	}

    /// Project the spectra onto a set of basis functions
	/// @param outfile is the name of the new binary output file that will be created
	/// @param center is a spectrum about which the data set will be rotated (ex. when performing mean centering)
	/// @param basis a set of basis vectors that the data set will be projected onto (after centering)
	/// @param M is the number of basis vectors
	/// @param mask is a character mask used to limit processing to valid pixels
	bool project_cublas(std::string outfile, double* center, double* basis, unsigned long long M, unsigned char* mask = NULL, bool PROGRESS = false){

		//cudaError_t cudaStat;
		//cublasStatus_t stat;
		cublasHandle_t handle;

		std::ofstream target(outfile.c_str(), std::ios::binary);	//open the target binary file

		progress = 0;													    //initialize the progress to zero (0)
		unsigned long long XY = X() * Y();									//calculate the number of elements in a band image
		unsigned long long B = Z();											//calculate the number of spectral elements

		double* s = (double*)malloc(sizeof(double) * B);					//allocate space for the spectrum that will be pulled from the file
		double* s_dev;														//declare a device pointer that will store the spectrum on the GPU
		HANDLE_ERROR(cudaMalloc(&s_dev, B * sizeof(double)));				//allocate space on the CUDA device for the spectrum


        double* basis_dev;														//  device pointer on the GPU
        HANDLE_ERROR(cudaMalloc(&basis_dev, M * B * sizeof(double)));					//  allocate space on the CUDA device
        HANDLE_ERROR(cudaMemset(basis_dev, 0, M * B * sizeof(double)));               //  initialize basis_dev to zero (0)


        /// transposing basis matrix (because cuBLAS is column-major)
        double *basis_Transposed = (double*)malloc(M * B * sizeof(double));
        memset(basis_Transposed, 0, M * B * sizeof(double));
        for (int i = 0; i<M; i++)
            for (int j = 0; j<B; j++)
            basis_Transposed[i+j*M] = basis[i*B+j];
		//copy the basis_Transposed matrix to the CUDA device (both matrices are stored in column-major format)
		CUBLAS_HANDLE_ERROR(cublasSetMatrix((int)M, (int)B, sizeof(double),basis_Transposed, (int)M, basis_dev, (int)M));

		double* center_dev;																						//declare a device pointer that will store the center (average)
		HANDLE_ERROR(cudaMalloc(&center_dev, B * sizeof(double)));									//allocate space on the CUDA device for the center (average)
		CUBLAS_HANDLE_ERROR(cublasSetVector((int)B, sizeof(double), center, 1, center_dev, 1));			//copy the center vector (average) to the CUDA device (from host to device)


        double* A = (double*)malloc(sizeof(double) * M);								//allocate space for the projected pixel on the host
        double* A_dev;																	//declare a device pointer that will store the projected pixel on the GPU
		HANDLE_ERROR(cudaMalloc(&A_dev,M * sizeof(double)));				    //allocate space on the CUDA device for the projected pixel
		HANDLE_ERROR(cudaMemset(A_dev, 0,M * sizeof(double)));		        //initialize the projected pixel to zero (0)

		double axpy_alpha = -1;												//multiplication factor for the center (in order to perform a subtraction)
		double axpy_alpha2 = 1;												//multiplication factor for the matrix-vector multiplication
        double axpy_beta = 0;												//multiplication factor for the matrix-vector multiplication (there is no second scalor)

		CUBLAS_HANDLE_ERROR(cublasCreate(&handle));					//create a cuBLAS instance

        T* temp = (T*)malloc(sizeof(T) * M);													//allocate space for the projected pixel to be written on the disc
		size_t i;
		for (unsigned long long xy = 0; xy < XY; xy++){											//for each pixel
			if (mask == NULL || mask[xy] != 0){
				pixeld(s, xy);																	//retreive the spectrum at the current xy pixel location

				CUBLAS_HANDLE_ERROR(cublasSetVector((int)B, sizeof(double), s, 1, s_dev, 1));						    //copy the spectrum from the host to the device
                CUBLAS_HANDLE_ERROR(cublasDaxpy(handle, (int)B, &axpy_alpha, center_dev, 1, s_dev, 1));					//subtract the center (average)
                CUBLAS_HANDLE_ERROR(cublasDgemv(handle,CUBLAS_OP_N,(int)M,(int)B,&axpy_alpha2,basis_dev,(int)M,s_dev,1,&axpy_beta,A_dev,1));         //performs the matrix-vector multiplication
                CUBLAS_HANDLE_ERROR(cublasGetVector((int)M, sizeof(double), A_dev, 1, A, 1));							//copy the projected pixel to the host (from GPU to CPU)
						
				for(i = 0; i < M; i++)	temp[i] = (T)A[i];										//casting projected pixel from double to whatever T is
			}
			else
				memset(temp, 0, sizeof(T) * M);

			target.write(reinterpret_cast<const char*>(temp), sizeof(T) * M);					  //write the projected vector
			if(PROGRESS) progress = (double)(xy+1) / XY * 100;									    //record the current progress

		}

        //clean up allocated device memory
		HANDLE_ERROR(cudaFree(A_dev));
		HANDLE_ERROR(cudaFree(s_dev));
		HANDLE_ERROR(cudaFree(basis_dev));
		HANDLE_ERROR(cudaFree(center_dev));
		CUBLAS_HANDLE_ERROR(cublasDestroy(handle));
		free(A);
		free(s);
		free(temp);
		target.close();												//close the output file
		
		return true;
	}

	/// Project the spectra onto a set of basis functions
	/// @param outfile is the name of the new binary output file that will be created
	/// @param center is a spectrum about which the data set will be rotated (ex. when performing mean centering)
	/// @param basis a set of basis vectors that the data set will be projected onto (after centering)
	/// @param M is the number of basis vectors
	/// @param mask is a character mask used to limit processing to valid pixels
	bool project(std::string outfile, double* center, double* basis, unsigned long long M, unsigned char* mask = NULL, int cuda_device = 0, bool PROGRESS = false){
		if (cuda_device >= 0) {													//if a CUDA device is specified
			int dev_count;
			HANDLE_ERROR(cudaGetDeviceCount(&dev_count));						//get the number of CUDA devices
			if (dev_count > 0 && dev_count > cuda_device) {							//if the first device is not an emulator
				cudaDeviceProp prop;
				cudaGetDeviceProperties(&prop, cuda_device);									//get the property of the requested CUDA device
				if (prop.major != 9999) {
					std::cout << "Using CUDA device [" << cuda_device << "] to perform a basis projection..." << std::endl;
					HANDLE_ERROR(cudaSetDevice(cuda_device));
					return project_cublas(outfile, center, basis, M, mask, PROGRESS);
				}
			}																	//otherwise continue using the CPU		
			std::cout << "WARNING: cuBLAS failed, using CPU" << std::endl;
		}
		
		std::ofstream target(outfile.c_str(), std::ios::binary);	//open the target binary file
		//std::string headername = outfile + ".hdr";					//the header file name

		//memory allocation
		unsigned long long XY = X() * Y();
		unsigned long long B = Z();

		T* s = (T*)malloc(sizeof(T) * B);							//allocate space for the spectrum
		T* rs = (T*)malloc(sizeof(T) * M);							//allocate space for the projected spectrum
		double* bv;													//pointer to the current projection vector
		for(unsigned long long xy = 0; xy < XY; xy++){				//for each spectrum in the image
			memset(rs, 0, sizeof(T) * M);
			if(mask == NULL || mask[xy]){
				pixel(s, xy);											//load the spectrum
				for(unsigned long long m = 0; m < M; m++){				//for each basis vector
					bv = &basis[m * B];									//assign 'bv' to the beginning of the basis vector
					for(unsigned long long b = 0; b < B; b++){			//for each band
						rs[m] += (T)(((double)s[b] - center[b]) * bv[b]);		//center the spectrum and perform the projection
					}
				}
			}

			target.write(reinterpret_cast<const char*>(rs), sizeof(T) * M);					//write the projected vector
			if(PROGRESS) progress = (double)(xy+1) / XY * 100;
		}

		free(s);													//free temporary storage arrays
		free(rs);
		target.close();												//close the output file
		
		return true;
	}

	bool inverse(std::string outfile, double* center, double* basis, unsigned long long B, unsigned long long C = 0, bool PROGRESS = false){

		std::ofstream target(outfile.c_str(), std::ios::binary);	//open the target binary file
		std::string headername = outfile + ".hdr";					//the header file name

		//memory allocation
		unsigned long long XY = X() * Y();
		if(C == 0) C = Z();											//if no coefficient number is given, assume all are used
		C = std::min<unsigned long long>(C, Z());					//set the number of coefficients (the user can specify fewer)

		T* coeff = (T*)malloc(sizeof(T) * Z());						//allocate space for the coefficients
		T* s = (T*)malloc(sizeof(T) * B);							//allocate space for the spectrum
		double* bv;													//pointer to the current projection vector
		for(unsigned long long xy = 0; xy < XY; xy++){				//for each pixel in the image (expressed as a set of coefficients)
			pixel(coeff, xy);										//load the coefficients
			memset(s, 0, sizeof(T) * B);							//initialize the spectrum to zero (0)
			for(unsigned long long c = 0; c < C; c++){				//for each basis vector coefficient
				bv = &basis[c * B];									//assign 'bv' to the beginning of the basis vector
				for(unsigned long long b = 0; b < B; b++){			//for each component of the basis vector
					s[b] += (T)((double)coeff[c] * bv[b] + center[b]);			//calculate the contribution of each element of the basis vector in the final spectrum
				}
			}

			target.write(reinterpret_cast<const char*>(s), sizeof(T) * B);					//write the projected vector
			if(PROGRESS) progress = (double)(xy+1) / XY * 100;
		}

		free(coeff);												//free temporary storage arrays
		free(s);
		target.close();												//close the output file

		return true;
	}


	/// Crop a region of the image and save it to a new file.

	/// @param outfile is the file name for the new cropped image
	/// @param x0 is the lower-left x pixel coordinate to be included in the cropped image
	/// @param y0 is the lower-left y pixel coordinate to be included in the cropped image
	/// @param x1 is the upper-right x pixel coordinate to be included in the cropped image
	/// @param y1 is the upper-right y pixel coordinate to be included in the cropped image
	bool crop(std::string outfile, unsigned long long x0,
								   unsigned long long y0,
								   unsigned long long x1,
								   unsigned long long y1,
								   unsigned long long b0,
								   unsigned long long b1,
								   bool PROGRESS = false){

		//calculate the new number of samples, lines, and bands
		unsigned long long samples = x1 - x0 + 1;
		unsigned long long lines = y1 - y0 + 1;
		unsigned long long bands = b1 - b0 + 1;

		//calculate the length of one cropped spectrum
		unsigned long long L = bands * sizeof(T);

		//unsigned long long L = Z() * sizeof(T);

		//allocate space for the spectrum
		char* temp = (char*)malloc(L);

		//open an output file for binary writing
		std::ofstream out(outfile.c_str(), std::ios::binary);

		//seek to the first pixel in the cropped image
		size_t startx = x0 * Z();
		size_t starty = y0 * X() * Z();
		size_t startb = b0;
		file.seekg( (starty + startx + startb) * sizeof(T), std::ios::beg);

		//distance between sample spectra in the same line
		size_t dist_between_samples = Z() - bands;
		size_t jump_sample = dist_between_samples * sizeof(T);

		//distance between sample spectra in adjacent lines
		//unsigned long long jump_line = ( X() - x1 + x0 ) * Z() * sizeof(T);
		size_t dist_between_lines = X() - samples;
		size_t jump_line = dist_between_lines * Z() * sizeof(T);


		//unsigned long long sp = y0 * X() + x0;		//start pixel

		//for each pixel in the image
		for (unsigned y = 0; y < lines; y++) {
			for (unsigned x = 0; x < samples; x++) {
				//read the cropped spectral region
				file.read(temp, L );
				//pixel(temp, sp + x + y * X());
				out.write(temp, L);   //write slice data into target file

				file.seekg(jump_sample, std::ios::cur);

				if(PROGRESS) progress = (double)(y * samples + x + 1) / (lines * samples) * 100;
			}

			file.seekg(jump_line, std::ios::cur);
		}
		free(temp);
		out.close();

		return true;
	}

	/// Remove a list of bands from the ENVI file

	/// @param outfile is the file name for the output hyperspectral image (with trimmed bands)
	/// @param b is an array of bands to be eliminated
	void trim(std::string outfile, std::vector<size_t> band_array, bool PROGRESS = false){

		std::ofstream out(outfile.c_str(), std::ios::binary);	//open the output file for writing
		file.seekg(0, std::ios::beg);							//move to the beginning of the input file

		size_t B = Z();								//calculate the number of elements in a spectrum
		size_t Bdst = Z() - band_array.size();		//calculate the number of elements in an output spectrum
		size_t Bb = B * sizeof(T);					//calculate the number of bytes in a spectrum
		size_t XY = X() * Y();						//calculate the number of pixels in the image
		T* src = (T*)malloc(Bb);					//allocate space to store an input spectrum
		T* dst = (T*)malloc(Bdst * sizeof(T));		//allocate space to store an output spectrum

		size_t i;									//index into the band array
		size_t bdst;								//index into the output array
		for(size_t xy = 0; xy < XY; xy++){			//for each pixel
			i = 0;
			bdst = 0;
			file.read((char*)src, Bb);				//read a spectrum
			for(size_t b = 0; b < B; b++){			//for each band
				if(b != band_array[i]){				//if the band isn't trimmed
					dst[bdst] = src[b];				//copy the band value to the output spectrum
					bdst++;
				}
				else i++;							//otherwise increment i
			}
			out.write((char*)dst, Bdst * sizeof(T));	//write the output spectrum
			if(PROGRESS) progress = (double)(xy + 1) / (double) XY * 100;
		}
		free(src);
		free(dst);
	}

	/// Combine two BIP images along the Y axis

	/// @param outfile is the combined file to be output
	/// @param infile is the input file stream for the image to combine with this one
	/// @param Sx is the size of the second image along X
	/// @param Sy is the size of the second image along Y
	/// @param offset is a shift (negative or positive) in the combined image to the left or right
	void combine(std::string outfile, bip<T>* C, long long xp, long long yp, bool PROGRESS = false){
		std::ofstream out(outfile.c_str(), std::ios::binary);	//open the output file for writing
		file.seekg(0, std::ios::beg);								//move to the beginning of both files
		C->file.seekg(0, std::ios::beg);

		size_t S[2];				//size of the output band image
		size_t p0[2];				//position of the current image in the output
		size_t p1[2];				//position of the source image in the output

		hsi<T>::calc_combined_size(xp, yp, C->X(), C->Y(), S[0], S[1], p0[0], p0[1], p1[0], p1[1]);	//calculate the image placement parameters

		size_t spec_bytes = Z() * sizeof(T);						//calculate the number of bytes in a spectrum
		T* spec = (T*)malloc(spec_bytes);							//allocate space for a spectrum

		for(size_t y = 0; y < S[1]; y++){							//for each pixel in the destination image
			for(size_t x = 0; x < S[0]; x++){
				if(x >= p0[0] && x < p0[0] + X() && y >= p0[1] && y < p0[1] + Y())	//if this pixel is in the current image
					file.read((char*)spec, spec_bytes);
				else if(x >= p1[0] && x < p1[0] + C->X() && y >= p1[1] && y < p1[1] + C->Y())	//if this pixel is in the source image
					C->file.read((char*)spec, spec_bytes);
				else
					memset(spec, 0, spec_bytes);
				out.write((char*)spec, spec_bytes);					//write to the output file
			}
			if(PROGRESS) progress = (double)( (y+1) * S[0] + 1) / (double) (S[0] * S[1]) * 100;
		}
	}

	///Append two files together along the band dimension
	void append(std::string outfile, bip<T>* C, bool PROGRESS = false) {
		std::ofstream out(outfile.c_str(), std::ios::binary);	//open the output file for writing
		file.seekg(0, std::ios::beg);							//move to the beginning of both files
		C->file.seekg(0, std::ios::beg);
		size_t a_bytes = Z() * sizeof(T);					//calculate the number of bytes in a single plane of this file
		size_t b_bytes = C->Z() * sizeof(T);			//calculate the number of bytes in a single plane of the appending file
		T* a = (T*)malloc(a_bytes);								//allocate space for a plane of the current file
		T* b = (T*)malloc(b_bytes);								//allocate space for a plane of the appended file
		if (PROGRESS) progress = 0;
		for (size_t xy = 0; xy < X()*Y(); xy++) {
			spectrum(a, xy);								//read a plane from the current file
			out.write((char*)a, a_bytes);								//write the plane to disk
			C->spectrum(b, xy);								//read a plane from the appending file
			out.write((char*)b, b_bytes);
			if (PROGRESS) progress = (double)(xy + 1) / (double)(X() * Y()) * 100;
		}

		out.close();
	}
	/// Convolve the given band range with a kernel specified by a vector of coefficients.

	/// @param outfile is an already open stream to the output file
	/// @param C is an array of coefficients
	/// @param start is the band to start processing (the first coefficient starts here)
	/// @param nbands is the number of bands to process
	/// @param center is the index for the center coefficient for the kernel (used to set the wavelengths in the output file)

	void convolve(std::string outfile, std::vector<double> C, size_t start, size_t end, unsigned char* mask = NULL, bool PROGRESS = false){
		std::ofstream out(outfile.c_str(), std::ios::binary);		//open the output file for writing

		size_t N = end - start + 1;									//number of bands in the output spectrum
		size_t Nb = N * sizeof(T);									//size of the output spectrum in bytes
		size_t B = Z();												//calculate the number of values in a spectrum
		size_t Bb = B * sizeof(T);									//calculate the size of a spectrum in bytes

		file.seekg(0, std::ios::beg);								//move to the beginning of the input file

		size_t nC = C.size();										//get the number of bands that the kernel spans
		T* inspec = (T*)malloc(Bb);									//allocate space for the input spectrum
		T* outspec = (T*)malloc(Nb);								//allocate space for the output spectrum

		size_t XY = X() * Y();										//number of pixels in the image
		for(size_t xy = 0; xy < XY; xy++){							//for each pixel
			file.read((char*)inspec, Bb);							//read an input spectrum
			memset(outspec, 0, Nb);									//set the output spectrum to zero (0)
			if(mask == NULL || mask[xy]){
				for(size_t b = 0; b < N; b++){							//for each component of the spectrum
					for(size_t c = 0; c < nC; c++){						//for each coefficient in the kernel
						outspec[b] += (T)(inspec[b + start + c] * C[c]);		//perform the sum/multiply part of the convolution
					}
				}
			}
			out.write((char*)outspec, Nb);							//output the band
			if(PROGRESS) progress = (double)(xy+1) / (double)XY * 100;
		}
	}

	void deriv(std::string outfile, size_t d, size_t order, const std::vector<double> w, unsigned char* mask = NULL, bool PROGRESS = false){
		std::ofstream out(outfile.c_str(), std::ios::binary);		//open the output file for writing


		size_t B = Z();												//calculate the number of values in a spectrum
		size_t Bb = B * sizeof(T);									//calculate the size of a spectrum in bytes

		bool UNIFORM = true;
		double ds = w[1] - w[0];									//initialize ds
		for(size_t b = 1; b < B; b++)								//test to see if the spectral spacing is uniform (if it is, convolution is much faster)
			if(w[b] - w[b-1] != ds) UNIFORM = false;

		size_t nC = order + d;									//approximating a derivative requires order + d samples

		file.seekg(0, std::ios::beg);								//move to the beginning of the input file

		T* inspec = (T*)malloc(Bb);									//allocate space for the input spectrum
		T* outspec = (T*)malloc(Bb);								//allocate space for the output spectrum

		size_t XY = X() * Y();										//number of pixels in the image
		size_t mid = (size_t)(nC / 2);							//calculate the mid point of the kernel
		size_t iw;													//index to the first wavelength used to evaluate the derivative at this band
		for(size_t xy = 0; xy < XY; xy++){							//for each pixel
			file.read((char*)inspec, Bb);							//read an input spectrum
			memset(outspec, 0, Bb);									//set the output spectrum to zero (0)
			if(mask == NULL || mask[xy]){
				iw = 0;
				for(size_t b = 0; b < mid; b++){							//for each component of the spectrum
					std::vector<double> w_pts(w.begin() + iw, w.begin() + iw + nC);			//get the wavelengths corresponding to each sample
					std::vector<double> C = diff_coefficients(w[b], w_pts, d);					//get the optimal sample weights
					for(size_t c = 0; c < nC; c++)						//for each coefficient in the kernel
						outspec[b] += (T)(inspec[iw + c] * C[c]);		//perform the sum/multiply part of the convolution
				}
				std::vector<double> w_pts(w.begin(), w.begin() + nC);			//get the wavelengths corresponding to each sample
				std::vector<double> C = diff_coefficients(w[0], w_pts, d);					//get the optimal sample weights
				for(size_t b = mid; b <= B - (nC - mid); b++){
					iw = b - mid;
					if(!UNIFORM){																//if the spacing is non-uniform, we have to re-calculate these points every iteration
						std::vector<double> w_pts(w.begin() + iw, w.begin() + iw + nC);			//get the wavelengths corresponding to each sample
						std::vector<double> C = diff_coefficients(w[b], w_pts, d);					//get the optimal sample weights
					}
					for(size_t c = 0; c < nC; c++)						//for each coefficient in the kernel
						outspec[b] += (T)(inspec[iw + c] * C[c]);		//perform the sum/multiply part of the convolution
				}
				iw = B - nC;
				for(size_t b = B - (nC - mid) + 1; b < B; b++){
					std::vector<double> w_pts(w.begin() + iw, w.begin() + iw + nC);			//get the wavelengths corresponding to each sample
					std::vector<double> C = diff_coefficients(w[b], w_pts, d);					//get the optimal sample weights
					for(size_t c = 0; c < nC; c++)						//for each coefficient in the kernel
						outspec[b] += (T)(inspec[iw + c] * C[c]);		//perform the sum/multiply part of the convolution
				}
			}
			out.write((char*)outspec, Bb);							//output the band
			if(PROGRESS) progress = (double)(xy+1) / (double)XY * 100;
		}
	}

	bool multiply(std::string outname, double v, unsigned char* mask = NULL, bool PROGRESS = false){
		std::ofstream target(outname.c_str(), std::ios::binary);		//open the target binary file
		std::string headername = outname + ".hdr";						//the header file name

		unsigned long long N = X() * Y();								//calculate the total number of pixels to be processed
		unsigned long long B = Z();										//get the number of bands
		T* s = (T*)malloc(sizeof(T) * B);								//allocate memory to store a pixel
		for(unsigned long long n = 0; n < N; n++){						//for each pixel in the image
			if(mask == NULL || mask[n]){								//if the pixel is masked
				for(size_t b = 0; b < B; b++)							//for each band in the spectrum
					s[b] *= (T)v;											//multiply
			}

			if(PROGRESS) progress = (double)(n+1) / N * 100;			//set the current progress

			target.write((char*)s, sizeof(T) * B);						//write the corrected data into destination
		}																//end for each pixel

		free(s);														//free the spectrum
		target.close();													//close the output file
		return true;
	}

	bool add(std::string outname, double v, unsigned char* mask = NULL, bool PROGRESS = false){
		std::ofstream target(outname.c_str(), std::ios::binary);		//open the target binary file
		std::string headername = outname + ".hdr";						//the header file name

		unsigned long long N = X() * Y();								//calculate the total number of pixels to be processed
		unsigned long long B = Z();										//get the number of bands
		T* s = (T*)malloc(sizeof(T) * B);								//allocate memory to store a pixel
		for(unsigned long long n = 0; n < N; n++){						//for each pixel in the image
			if(mask == NULL || mask[n]){								//if the pixel is masked
				for(size_t b = 0; b < B; b++)							//for each band in the spectrum
					s[b] += (T)v;											//multiply
			}

			if(PROGRESS) progress = (double)(n+1) / N * 100;			//set the current progress

			target.write((char*)s, sizeof(T) * B);						//write the corrected data into destination
		}																//end for each pixel

		free(s);														//free the spectrum
		target.close();													//close the output file
		return true;
	}

	int fft(std::string outname, size_t bandmin, size_t bandmax, size_t samples = 0, T* ratio = NULL, size_t rx = 0, size_t ry = 0, bool PROGRESS = false, int device = 0){
		if(device == -1){
			std::cout<<"ERROR: GPU required for FFT (uses cuFFT)."<<std::endl;
			exit(1);
		}
		if(samples == 0) samples = Z();								//if samples are specified, use all of them
		if(samples > Z()){
			std::cout<<"ERROR: stim::envi doesn't support FFT padding just yet."<<std::endl;
			exit(1);
		}
		int nd;															//stores the number of CUDA devices
		HANDLE_ERROR(cudaGetDeviceCount(&nd));							//get the number of CUDA devices
		if(device >= nd){												//test for the existence of the requested device
			std::cout<<"ERROR: requested CUDA device for stim::envi::fft() doesn't exist"<<std::endl;
			exit(1);
		}
		HANDLE_ERROR(cudaSetDevice(device));							//set the CUDA device
		cudaDeviceProp prop;
		HANDLE_ERROR(cudaGetDeviceProperties(&prop, device));			//get the CUDA device properties

		size_t B = Z();
		size_t S = samples;
		size_t fft_size = S * sizeof(T);								//number of bytes for each FFT
		size_t cuda_bytes = prop.totalGlobalMem;						//get the number of bytes of global memory available
		size_t cuda_use = (size_t)floor(cuda_bytes * 0.2);								//only use 80%
		size_t nS = cuda_use / fft_size;								//calculate the number of spectra that can be loaded onto the GPU as a single batch
		size_t batch_bytes = nS * fft_size;								//calculate the size of a batch (in bytes)
		size_t fft_bytes = nS * (S/2 + 1) * sizeof(cufftComplex);
		T* batch = (T*) malloc(batch_bytes);							//allocate space in host memory to store a batch
		memset(batch, 0, batch_bytes);
		std::complex<T>* batch_fft = (std::complex<T>*) malloc(fft_bytes);
		T* gpu_batch;													//device pointer to the batch
		HANDLE_ERROR(cudaMalloc(&gpu_batch, batch_bytes));				//allocate space on the device for the FFT batch
		cufftComplex* gpu_batch_fft;												//allocate space for the FFT result
		HANDLE_ERROR(cudaMalloc(&gpu_batch_fft, fft_bytes));
		int N[1];														//create an array with the interferogram size (required for cuFFT input)
		N[0] = (int)S;													//set the only array value to the interferogram size

		//if a background is provided for a ratio
		std::complex<T>* ratio_fft = NULL;											//create a pointer for the FFT of the ratio image (if it exists)
		if(ratio){
			size_t bkg_bytes = rx * ry * S * sizeof(T);								//calculate the total number of bytes in the background image
			T* bkg_copy = (T*) malloc(bkg_bytes);									//allocate space to copy the background
			if(S == Z()) memcpy(bkg_copy, ratio, bkg_bytes);						//if the number of samples used in processing equals the number of available samples
			else{
				for(size_t xyi = 0; xyi < rx*ry; xyi++)
					memcpy(&bkg_copy[xyi * S], &ratio[xyi * B], S * sizeof(T));
			}
			T* gpu_ratio;
			HANDLE_ERROR(cudaMalloc(&gpu_ratio, bkg_bytes));
			HANDLE_ERROR(cudaMemcpy(gpu_ratio, bkg_copy, bkg_bytes, cudaMemcpyHostToDevice));
			cufftHandle bkg_plan;
			CUFFT_HANDLE_ERROR(cufftPlanMany(&bkg_plan, 1, N, NULL, 1, N[0], NULL, 1, N[0], CUFFT_R2C, (int)(rx * ry)));
			size_t bkg_fft_bytes = rx * ry * (S / 2 + 1) * sizeof(cufftComplex);
			T* gpu_ratio_fft;
			HANDLE_ERROR(cudaMalloc(&gpu_ratio_fft, bkg_fft_bytes));
			CUFFT_HANDLE_ERROR(cufftExecR2C(bkg_plan, (cufftReal*)gpu_ratio, (cufftComplex*)gpu_ratio_fft));
			ratio_fft = (std::complex<T>*) malloc(bkg_fft_bytes);
			HANDLE_ERROR(cudaMemcpy(ratio_fft, gpu_ratio_fft, bkg_fft_bytes, cudaMemcpyDeviceToHost));
			HANDLE_ERROR(cudaFree(gpu_ratio));
			HANDLE_ERROR(cudaFree(gpu_ratio_fft));
			CUFFT_HANDLE_ERROR(cufftDestroy(bkg_plan));
		}

		cufftHandle plan;												//create a CUFFT plan
		CUFFT_HANDLE_ERROR(cufftPlanMany(&plan, 1, N, NULL, 1, N[0], NULL, 1, N[0], CUFFT_R2C, (int)nS));

		std::ofstream outfile(outname, std::ios::binary);				//open a file for writing

		size_t XY = X() * Y();											//calculate the number of spectra
		size_t xy = 0;
		size_t bs;														//stores the number of spectra in the current batch
		size_t s, b;
		size_t S_fft = S/2 + 1;
		size_t bandkeep = bandmax - bandmin + 1;
		size_t x, y;
		size_t ratio_i;
		T* temp_spec = (T*) malloc(Z() * sizeof(T));					//allocate space to hold a single pixel
		while(xy < XY){													//while there are unprocessed spectra
			bs = min(XY - xy, nS);										//calculate the number of spectra to include in the batch
			for(s = 0; s < bs; s++){									//for each spectrum in the batch
				pixel(temp_spec, xy + s);						//read a pixel from disk
				memcpy(&batch[s * S], temp_spec, S * sizeof(T));
				//pixel(&batch[s * S], xy + s);							//read the next spectrum
			}
			HANDLE_ERROR(cudaMemcpy(gpu_batch, batch, batch_bytes, cudaMemcpyHostToDevice));
			CUFFT_HANDLE_ERROR(cufftExecR2C(plan, (cufftReal*)gpu_batch, gpu_batch_fft));			//execute the (implicitly forward) transform
			HANDLE_ERROR(cudaMemcpy(batch_fft, gpu_batch_fft, fft_bytes, cudaMemcpyDeviceToHost));	//copy the data back to the GPU
			for(s = 0; s < bs; s++){															//for each spectrum in the batch
				y = (xy + s)/X();
				x = xy + s - y * X();
				if(ratio_fft)	ratio_i = (y % ry) * rx + (x % rx);								//if a background is used, calculate the coordinates into it
				for(b = 0; b < S/2 + 1; b++){														//for each sample
					if(ratio_fft)						
						batch[s * S + b] = -log(abs(batch_fft[s * S_fft + b]) / abs(ratio_fft[ratio_i * S_fft + b]));
					else
						batch[s * S + b] = abs(batch_fft[s * S_fft + b]);		//calculate the magnitude of the spectrum					
				}
				outfile.write((char*)&batch[s * S + bandmin], bandkeep * sizeof(T));							//save the resulting spectrum
			}
			xy += bs;													//increment xy by the number of spectra processed
			if(PROGRESS) progress = (double)xy / (double)XY * 100;
		}
		outfile.close();
		free(ratio_fft);
		free(batch_fft);
		free(batch);
		HANDLE_ERROR(cudaFree(gpu_batch));
		HANDLE_ERROR(cudaFree(gpu_batch_fft));
		return 0;
	}

	/// Close the file.
	bool close(){
		file.close();
		return true;
	}

	};
}

#endif