Compare View
Commits (7)
Showing
9 changed files
Show diff stats
python/classify.py
... | ... | @@ -12,7 +12,7 @@ import sklearn.metrics |
12 | 12 | import scipy |
13 | 13 | import scipy.misc |
14 | 14 | import envi |
15 | -import spectral | |
15 | +import hyperspectral | |
16 | 16 | import random |
17 | 17 | import progressbar |
18 | 18 | import matplotlib.pyplot as plt |
... | ... | @@ -177,7 +177,7 @@ def envi_batch_predict(E, C, batch=10000): |
177 | 177 | else: |
178 | 178 | Tv = numpy.concatenate((Tv, C.predict(Fv.transpose()).transpose()), 0) |
179 | 179 | tempmask = E.batchmask() |
180 | - Lv = spectral.unsift2(Tv, tempmask) | |
180 | + Lv = hyperspectral.unsift2(Tv, tempmask) | |
181 | 181 | Cv = label2class(Lv.squeeze(), background=0) |
182 | 182 | RGB = class2color(Cv) |
183 | 183 | plt.imshow(RGB) | ... | ... |
python/digitalstain.py
... | ... | @@ -5,7 +5,7 @@ Created on Tue Jul 25 16:28:37 2017 |
5 | 5 | @author: david |
6 | 6 | """ |
7 | 7 | |
8 | -import spectral | |
8 | +import hyperspectral | |
9 | 9 | import envi |
10 | 10 | import classify |
11 | 11 | import numpy |
... | ... | @@ -18,22 +18,36 @@ import glob |
18 | 18 | import matplotlib.pyplot as plt |
19 | 19 | import random |
20 | 20 | |
21 | -def generate_stain(envifile, stainfile, N=5000, batch_size=10000, validate=True): | |
22 | - E = envi.envi(envifile) | |
21 | +def generate_stain(envifile, stainfile, maskfile="", trainmask="", N=5000, batch_size=10000, validate=True): | |
22 | + if trainmask == "": | |
23 | + E = envi.envi(envifile) | |
24 | + else: | |
25 | + mask = scipy.misc.imread(trainmask, flatten=True) | |
26 | + E = envi.envi(envifile, mask=mask) | |
27 | + | |
23 | 28 | mask = classify.random_mask(E.mask, N) |
29 | + scipy.misc.imsave("random.bmp", mask) | |
24 | 30 | |
25 | 31 | Ft = E.loadmask(mask).transpose() |
26 | 32 | |
27 | 33 | stain = numpy.rollaxis(scipy.misc.imread(stainfile), 2) |
28 | - Tt = spectral.sift2(stain, mask).transpose() | |
34 | + Tt = hyperspectral.sift2(stain, mask).transpose() | |
29 | 35 | |
36 | + print("Training MLPRegressor...") | |
30 | 37 | CLASS = sklearn.neural_network.MLPRegressor(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(), random_state=1, verbose=True) |
31 | 38 | CLASS.fit(Ft, Tt) |
32 | 39 | |
33 | 40 | if validate == False: |
34 | 41 | return CLASS |
35 | 42 | |
36 | - plt.ion() | |
43 | + print("Validating Stain...") | |
44 | + plt.ion() | |
45 | + if not maskfile == "": | |
46 | + E.close() #close the ENVI file | |
47 | + mask = scipy.misc.imread(maskfile, flatten=True) | |
48 | + print(numpy.count_nonzero(mask)) | |
49 | + E = envi.envi(envifile, mask=mask) | |
50 | + | |
37 | 51 | Fv = E.loadbatch(batch_size) #load the first batch |
38 | 52 | n = 0 |
39 | 53 | while not Fv == []: #loop until an empty batch is returned |
... | ... | @@ -41,7 +55,7 @@ def generate_stain(envifile, stainfile, N=5000, batch_size=10000, validate=True) |
41 | 55 | Tv = CLASS.predict(Fv.transpose()).transpose() |
42 | 56 | else: |
43 | 57 | Tv = numpy.append(Tv, CLASS.predict(Fv.transpose()).transpose(), 1) #append the predicted labels from this batch to those of previous batches |
44 | - COLORS = spectral.unsift2(Tv, E.batchmask()) #convert the matrix of class labels to a 2D array | |
58 | + COLORS = hyperspectral.unsift2(Tv, E.batchmask()) #convert the matrix of class labels to a 2D array | |
45 | 59 | RGB = numpy.rollaxis(COLORS, 0, 3).astype(numpy.ubyte) |
46 | 60 | plt.imshow(RGB) #display it |
47 | 61 | plt.pause(0.05) | ... | ... |
python/envi.py
... | ... | @@ -100,11 +100,11 @@ class envi_header: |
100 | 100 | #t = map(str.strip, t) #strip all of the tokens in the token list |
101 | 101 | |
102 | 102 | #handle the simple conditions |
103 | - if l[li].startswith("file type"): | |
104 | - if not l[li].strip().endswith("ENVI Standard"): | |
105 | - print("ERROR: unsupported ENVI file format: " + l[li].strip()) | |
106 | - return | |
107 | - elif l[li].startswith("samples"): | |
103 | + #if l[li].startswith("file type"): | |
104 | + # if not l[li].strip().endswith("ENVI Standard"): | |
105 | + # print("ERROR: unsupported ENVI file format: " + l[li].strip()) | |
106 | + # return | |
107 | + if l[li].startswith("samples"): | |
108 | 108 | self.samples = int(l[li].split()[-1]) |
109 | 109 | elif l[li].startswith("lines"): |
110 | 110 | self.lines = int(l[li].split()[-1]) | ... | ... |
python/stim_spectral.py renamed to python/hyperspectral.py
stim/biomodels/network.h
... | ... | @@ -473,6 +473,146 @@ public: |
473 | 473 | return E[e]; //return the specified edge (casting it to a fiber) |
474 | 474 | } |
475 | 475 | |
476 | + /// subdivide current network | |
477 | + void subdivision() { | |
478 | + | |
479 | + std::vector<unsigned> ori_index; // original index | |
480 | + std::vector<unsigned> new_index; // new index | |
481 | + std::vector<edge> nE; // new edge | |
482 | + std::vector<vertex> nV; // new vector | |
483 | + unsigned id = 0; | |
484 | + | |
485 | + for (unsigned i = 0; i < num_edge; i++) { | |
486 | + if (E[i].size() == 2) { // if current edge can't be subdivided | |
487 | + stim::centerline<T> line(2); | |
488 | + for (unsigned k = 0; k < 2; k++) | |
489 | + line[k] = E[i][k]; | |
490 | + line.update(); | |
491 | + | |
492 | + edge new_edge(line); | |
493 | + | |
494 | + vertex new_vertex = new_edge[0]; | |
495 | + id = E[i].v[0]; | |
496 | + auto position = std::find(ori_index.begin(), ori_index.end(), id); | |
497 | + if (position == ori_index.end()) { // new vertex | |
498 | + ori_index.push_back(id); | |
499 | + new_index.push_back(nV.size()); | |
500 | + | |
501 | + new_vertex.e[0].push_back(nE.size()); | |
502 | + new_edge.v[0] = nV.size(); | |
503 | + nV.push_back(new_vertex); // push back vertex as a new vertex | |
504 | + } | |
505 | + else { // existing vertex | |
506 | + int k = std::distance(ori_index.begin(), position); | |
507 | + new_edge.v[0] = new_index[k]; | |
508 | + nV[new_index[k]].e[0].push_back(nE.size()); | |
509 | + } | |
510 | + | |
511 | + new_vertex = new_edge[1]; | |
512 | + id = E[i].v[1]; | |
513 | + position = std::find(ori_index.begin(), ori_index.end(), id); | |
514 | + if (position == ori_index.end()) { // new vertex | |
515 | + ori_index.push_back(id); | |
516 | + new_index.push_back(nV.size()); | |
517 | + | |
518 | + new_vertex.e[1].push_back(nE.size()); | |
519 | + new_edge.v[1] = nV.size(); | |
520 | + nV.push_back(new_vertex); // push back vertex as a new vertex | |
521 | + } | |
522 | + else { // existing vertex | |
523 | + int k = std::distance(ori_index.begin(), position); | |
524 | + new_edge.v[1] = new_index[k]; | |
525 | + nV[new_index[k]].e[1].push_back(nE.size()); | |
526 | + } | |
527 | + | |
528 | + nE.push_back(new_edge); | |
529 | + | |
530 | + nE[nE.size() - 1].cylinder<T>::set_r(0, E[i].cylinder<T>::r(0)); | |
531 | + nE[nE.size() - 1].cylinder<T>::set_r(1, E[i].cylinder<T>::r(1)); | |
532 | + } | |
533 | + else { // subdivide current edge | |
534 | + for (unsigned j = 0; j < E[i].size() - 1; j++) { | |
535 | + stim::centerline<T> line(2); | |
536 | + for (unsigned k = 0; k < 2; k++) | |
537 | + line[k] = E[i][j + k]; | |
538 | + line.update(); | |
539 | + | |
540 | + edge new_edge(line); | |
541 | + | |
542 | + if (j == 0) { // edge contains original starting point | |
543 | + vertex new_vertex = new_edge[0]; | |
544 | + id = E[i].v[0]; | |
545 | + auto position = std::find(ori_index.begin(), ori_index.end(), id); | |
546 | + if (position == ori_index.end()) { // new vertex | |
547 | + ori_index.push_back(id); | |
548 | + new_index.push_back(nV.size()); | |
549 | + | |
550 | + new_vertex.e[0].push_back(nE.size()); | |
551 | + new_edge.v[0] = nV.size(); | |
552 | + nV.push_back(new_vertex); // push back vertex as a new vertex | |
553 | + } | |
554 | + else { // existing vertex | |
555 | + int k = std::distance(ori_index.begin(), position); | |
556 | + new_edge.v[0] = new_index[k]; | |
557 | + nV[new_index[k]].e[0].push_back(nE.size()); | |
558 | + } | |
559 | + | |
560 | + new_vertex = new_edge[1]; | |
561 | + new_vertex.e[1].push_back(nE.size()); | |
562 | + new_edge.v[1] = nV.size(); | |
563 | + nV.push_back(new_vertex); // push back internal point as a new vertex | |
564 | + | |
565 | + nE.push_back(new_edge); | |
566 | + } | |
567 | + | |
568 | + else if (j == E[i].size() - 2) { // edge contains original ending point | |
569 | + | |
570 | + vertex new_vertex = new_edge[1]; | |
571 | + nV[nV.size() - 1].e[0].push_back(nE.size()); | |
572 | + new_edge.v[0] = nV.size() - 1; | |
573 | + | |
574 | + id = E[i].v[1]; | |
575 | + auto position = std::find(ori_index.begin(), ori_index.end(), id); | |
576 | + if (position == ori_index.end()) { // new vertex | |
577 | + ori_index.push_back(id); | |
578 | + new_index.push_back(nV.size()); | |
579 | + | |
580 | + new_vertex.e[1].push_back(nE.size()); | |
581 | + new_edge.v[1] = nV.size(); | |
582 | + nV.push_back(new_vertex); // push back vertex as a new vertex | |
583 | + } | |
584 | + else { // existing vertex | |
585 | + int k = std::distance(ori_index.begin(), position); | |
586 | + new_edge.v[1] = new_index[k]; | |
587 | + nV[new_index[k]].e[1].push_back(nE.size()); | |
588 | + } | |
589 | + | |
590 | + nE.push_back(new_edge); | |
591 | + } | |
592 | + | |
593 | + else { | |
594 | + vertex new_vertex = new_edge[1]; | |
595 | + | |
596 | + nV[nV.size() - 1].e[0].push_back(nE.size()); | |
597 | + new_vertex.e[1].push_back(nE.size()); | |
598 | + new_edge.v[0] = nV.size() - 1; | |
599 | + new_edge.v[1] = nV.size(); | |
600 | + nV.push_back(new_vertex); | |
601 | + | |
602 | + nE.push_back(new_edge); | |
603 | + } | |
604 | + | |
605 | + // get radii | |
606 | + nE[nE.size() - 1].cylinder<T>::set_r(0, E[i].cylinder<T>::r(j)); | |
607 | + nE[nE.size() - 1].cylinder<T>::set_r(1, E[i].cylinder<T>::r(j + 1)); | |
608 | + } | |
609 | + } | |
610 | + } | |
611 | + | |
612 | + (*this).E = nE; | |
613 | + (*this).V = nV; | |
614 | + } | |
615 | + | |
476 | 616 | //load a network from an OBJ file |
477 | 617 | void load_obj(std::string filename){ |
478 | 618 | |
... | ... | @@ -715,7 +855,7 @@ public: |
715 | 855 | edge new_edge(C3); // new edge |
716 | 856 | |
717 | 857 | //create an edge from the given centerline |
718 | - unsigned int I = new_edge.size(); //calculate the number of points on the centerline | |
858 | + unsigned int I = (unsigned)new_edge.size(); //calculate the number of points on the centerline | |
719 | 859 | |
720 | 860 | //get the first and last vertex IDs for the line |
721 | 861 | i[0] = S.E[l].front(); |
... | ... | @@ -1113,7 +1253,7 @@ public: |
1113 | 1253 | unsigned int id = 0; // split value |
1114 | 1254 | for(unsigned e = 0; e < E.size(); e++){ // for every edge |
1115 | 1255 | for(unsigned p = 0; p < E[e].size() - 1; p++){ // for every point in each edge |
1116 | - int t = E[e].length() / sigma * 2; | |
1256 | + int t = (int)(E[e].length() / sigma * 2); | |
1117 | 1257 | if (t <= 20) |
1118 | 1258 | threshold_fac = E[e].size(); |
1119 | 1259 | else | ... | ... |
stim/grids/image_stack.h
... | ... | @@ -206,9 +206,12 @@ public: |
206 | 206 | } |
207 | 207 | |
208 | 208 | |
209 | + /* This was causing compiler errors. I don't think this function call exists anywhere: | |
210 | + | |
209 | 211 | void read(std::string file, unsigned int X, unsigned int Y, unsigned int Z, unsigned int C = 1, unsigned int header = 0){ |
210 | 212 | read(file, stim::vec<unsigned long>(C, X, Y, Z), header); |
211 | 213 | } |
214 | + */ | |
212 | 215 | |
213 | 216 | T* data(){ |
214 | 217 | return ptr; | ... | ... |
stim/image/image.h
... | ... | @@ -653,7 +653,7 @@ public: |
653 | 653 | |
654 | 654 | //crop regions given by an array of 1D index values |
655 | 655 | std::vector< image<T> > crop_idx(size_t w, size_t h, std::vector<size_t> idx) { |
656 | - std::vector<image<T>> result(idx.size()); //create an array of image files to return | |
656 | + std::vector< image<T> > result(idx.size()); //create an array of image files to return | |
657 | 657 | for (size_t i = 0; i < idx.size(); i++) { //for each specified index point |
658 | 658 | size_t y = idx[i] / X(); //calculate the y coordinate from the 1D index (center of ROI) |
659 | 659 | size_t x = idx[i] - y * X(); //calculate the x coordinate (center of ROI) | ... | ... |
stim/visualization/cylinder.h