#ifndef STIM_CUDA_LAPLACIAN_CONV2_CUH #define STIM_CUDA_LAPLACIAN_CONV2_CUH #include #include #include //#include #define PI 3.1415926 #define SIGMA_N 3 //void array_multiply(float* lhs, float rhs, unsigned int N); //void array_add(float* ptr1, float* ptr2, float* sum, unsigned int N); //void array_abs(float* img, unsigned int N); /// This function evaluates the center-surround(Laplacian of Gaussian) gaussian derivative gradient of an one-channel image /// @param img is the one-channel image /// @param r is an array of radii for different scaled discs(filters) /// @param sigma_n is the number of standard deviations used to define the sigma stim::image laplacian_conv2(stim::image image, int sigma){ unsigned int w = image.width(); // get the width of picture unsigned int h = image.height(); // get the height of picture unsigned N = w * h; // get the number of pixels of picture int winsize = 2 * SIGMA_N * sigma + 1; // set the winsdow size of filter stim::image I(w, h, 1, 2); // allocate space for return image of dG2_conv2 stim::image Ixx(w, h); // allocate space for Ixx stim::image Iyy(w, h); // allocate space for Iyy stim::image laplacian(w, h); // allocate space for Pb I = dG2_conv2(image, sigma); // calculate the Ixx, Iyy Ixx = I.channel(0); Iyy = I.channel(1); array_add(Ixx.data(), Iyy.data(), laplacian.data(), N); //laplacian = Ixx + Iyy; array_abs(laplacian.data(), N); //stim::cpu2image(laplacian.data(), "data_output/laplacian_0919.bmp", w, h, stim::cmBrewer); return laplacian; } #endif