#ifndef STIM_CUDA_UPDATE_DIR_GLOBALD_H #define STIM_CUDA_UPDATE_DIR_GLOBAL_H # include # include #include #include #include "cpyToshare.cuh" #define RMAX_TEST 8 namespace stim{ namespace cuda{ // this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area. template __global__ void cuda_update_dir(T* gpuDir, T* gpuVote, T* gpuGrad, T* gpuTable, T phi, int rmax, int x, int y){ //calculate the start point for this block int bxi = blockIdx.x * blockDim.x; // calculate the 2D coordinates for this current thread. int xi = bxi + threadIdx.x; if(xi >= x) return; //if the index is outside of the image, terminate the kernel int yi = blockIdx.y * blockDim.y + threadIdx.y; int i = yi * x + xi; // convert 2D coordinates to 1D float theta = gpuGrad[2*i]; // calculate the voting direction based on the grtadient direction - global memory fetch gpuDir[i] = 0; //initialize the vote direction to zero float max = 0; // define a local variable to maximum value of the vote image in the voting area for this voter int id_x = 0; // define two local variables for the x and y position of the maximum int id_y = 0; int x_table = 2*rmax +1; // compute the size of window which will be checked for finding the voting area for this voter int rmax_sq = rmax * rmax; int tx_rmax = threadIdx.x + rmax; float atan_angle; float vote_c; for(int yr = -RMAX_TEST; yr <= RMAX_TEST; yr++){ if (yi+yr >= 0 && yi + yr < y){ for(int xr = -RMAX_TEST; xr <= RMAX_TEST; xr++){ unsigned int ind_t = (RMAX_TEST - yr) * x_table + RMAX_TEST - xr; // calculate the angle between the voter and the current pixel in x and y directions atan_angle = gpuTable[ind_t]; // find the vote value for the current counter vote_c = gpuVote[(yi+yr)*x + (xi+xr)]; // check if the current pixel is located in the voting area of this voter. if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) max) { max = vote_c; id_x = xr; id_y = yr; } } } } } unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x); float new_angle = gpuTable[ind_m]; if(xi < x && yi < y) gpuDir[i] = new_angle; } //end kernel // this kernel updates the gradient direction by the calculated voting direction. template __global__ void cuda_update_grad(T* gpuGrad, T* gpuDir, int x, int y){ // calculate the 2D coordinates for this current thread. int xi = blockIdx.x * blockDim.x + threadIdx.x; int yi = blockIdx.y * blockDim.y + threadIdx.y; // convert 2D coordinates to 1D int i = yi * x + xi; //update the gradient image with the vote direction gpuGrad[2*i] = gpuDir[i]; } template void gpu_update_dir(T* gpuVote, T* gpuGrad, T* gpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); unsigned int max_threads = stim::maxThreadsPerBlock(); dim3 threads(max_threads, 1); dim3 blocks(x/threads.x + (x %threads.x == 0 ? 0:1) , y); // allocate space on the GPU for the updated vote direction T* gpuDir; cudaMalloc(&gpuDir, bytes); //call the kernel to calculate the new voting direction cuda_update_dir <<< blocks, threads>>>(gpuDir, gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //call the kernel to update the gradient direction cuda_update_grad <<< blocks, threads >>>(gpuGrad, gpuDir, x , y); //free allocated memory cudaFree(gpuDir); } template void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){ //calculate the number of bytes in the array unsigned int bytes = x * y * sizeof(T); //calculate the number of bytes in the atan2 table unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T); //allocate space on the GPU for the Vote Image T* gpuVote; cudaMalloc(&gpuVote, bytes); //copy the input vote image to the GPU HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice)); //allocate space on the GPU for the input Gradient image T* gpuGrad; HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2)); //copy the Gradient data to the GPU HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice)); //allocate space on the GPU for the atan2 table T* gpuTable; HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table)); //copy the atan2 values to the GPU HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice)); //call the GPU version of the update direction function gpu_update_dir(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y); //copy the new gradient image back to the CPU cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ; //free allocated memory cudaFree(gpuTable); cudaFree(gpuVote); cudaFree(gpuGrad); } } } #endif